Metabolic Brain Disease

, Volume 30, Issue 5, pp 1139–1150 | Cite as

Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia

  • Alireza Sarkaki
  • Yaghoob Farbood
  • Mohammad Badavi
  • Leila Khalaj
  • Fariba Khodagholi
  • Ghorbangol Ashabi
Research Article


Stroke is one of the main threats to the public health worldwide. Metformin, an anti-diabetic drug, is an activator of AMP-activated protein kinase (AMPK). Metformin plays an important role on improving behavior in neurodegenerative diseases through diverse pathways. In the current study we aimed to investigate the probable effects of metformin on anxiety and autophagy pathway in global cerebral ischemia. Rats were divided into seven groups; Sham, ischemia (I/R), metformin (met), compound c (CC), CC+ischemia, met+ischemia, met+CC+ischemia. Metformin was pretreated for 2 weeks and CC administrated half an hour before global cerebral ischemia. Blood glucose, body weight, sensorimotor scores, elevated plus maze and open field test were evaluated after ischemia. Autophagy related factors were measured by Western blot and immunofluorescent assay in hippocampus of rats. Based on our results, pretreatment of rats by metformin improved sensory motor signs, anxiolytic behavior and locomotion in ischemic rats. CC injection in I/R rats attenuated the therapeutic effects of metformin. Autophagy factors such as light chain 3B, Atg7, Atg5-12 and beclin-1 decreased in ischemic rats compared to the sham group (P < 0.001 in all proteins). Level of autophagic factors increased in metformin pretreated rats compared to global cerebral ischemia (P < 0.001 in all proteins). These data indicated that the beneficial role of metformin in behavior and autophagy flux mediates via AMPK. Our results recommended that metformin therapy could improve psychological disorders and movement disability following I/R and profound understanding of AMPK-dependent autophagy would enhance its development as a promising target for intracellular pathway.


Forebrain ischemia Metformin AMPK Anxiety Autophagy Compound c 



This paper was extracted as a part of Ghorbangol Ashabi’s Ph.D thesis. The study was financially supported by research affairs of Ahvaz Jundishapur University of Medical Sciences (grant No. APRC-93-05) and was performed in Ahvaz Physiology Research Center. Authors have no conflict of interest.


  1. Appenrodt E, Schnabel R, Schwarzberg H (1998) Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav 64:543–547CrossRefPubMedGoogle Scholar
  2. Ashabi G, Ahmadiani A, Abdi A, Abraki SB, Khodagholi F (2013) Time course study of Abeta formation and neurite outgrowth disruption in differentiated human neuroblastoma cells exposed to H2O2: protective role of autophagy. Toxicol In Vitro 27:1780–1788CrossRefPubMedGoogle Scholar
  3. Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki (2014a) A pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain DisGoogle Scholar
  4. Ashabi G, Khodagholi F, Khalaj L, Goudarzvand M, Nasiri M (2014b) Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1alpha pathway. Metab Brain Dis 29:47–58CrossRefPubMedGoogle Scholar
  5. Bowen SE, Wiley JL, Balster RL (1996) The effects of abused inhalants on mouse behavior in an elevated plus-maze. Eur J Pharmacol 312:131–136CrossRefPubMedGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Brown ES, Rush AJ, McEwen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21:474–484CrossRefPubMedGoogle Scholar
  8. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705CrossRefPubMedGoogle Scholar
  9. Carchman EH, Whelan S, Loughran P, Mollen K, Stratamirovic S, Shiva S, Rosengart MR, Zuckerbraun BS (2013) Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J 27:4703–4711PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chandler MJ, DeLeo J, Carney JM (1985) An unanesthetized-gerbil model of cerebral ischemia-induced behavioral changes. J Pharmacol Methods 14:137–146CrossRefPubMedGoogle Scholar
  11. Espejo EF (1997) Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behav Brain Res 87:233–238CrossRefPubMedGoogle Scholar
  12. Forslin Aronsson S, Spulber S, Popescu LM, Winblad B, Post C, Oprica M, Schultzberg M (2006) alpha-Melanocyte-stimulating hormone is neuroprotective in rat global cerebral ischemia. Neuropeptides 40:65–75CrossRefPubMedGoogle Scholar
  13. Gage WH, Sleik RJ, Polych MA, McKenzie NC, Brown LA (2003) The allocation of attention during locomotion is altered by anxiety. Exp Brain Res 150:385–394PubMedGoogle Scholar
  14. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634, discussion 635 CrossRefPubMedGoogle Scholar
  15. Girbovan C, Morin L, Plamondon H (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol 23:1–13CrossRefPubMedGoogle Scholar
  16. Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J (2011) Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 7:1115–1131CrossRefPubMedGoogle Scholar
  17. Guo Y, Yu W, Sun D, Wang J, Li C, Zhang R, Babcock SA, Li Y, Liu M, Ma M, Shen M, Zeng C, Li N, He W, Zou Q, Zhang Y, Wang H (2014) A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: Role of AMPK-regulated autophagy. Biochim Biophys Acta 1852:319–331CrossRefPubMedGoogle Scholar
  18. Hadley G, Papadakis M, Buchan AM (2014) A method of inducing global cerebral ischemia. Methods Mol Biol 1135:111–120CrossRefPubMedGoogle Scholar
  19. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157PubMedCentralCrossRefPubMedGoogle Scholar
  20. Khang R, Park C, Shin JH (2014) The biguanide metformin alters phosphoproteomic profiling in mouse brain. Neurosci Lett 579:145–150CrossRefPubMedGoogle Scholar
  21. Krause GS, Kumar K, White BC, Aust SD, Wiegenstein JG (1986) Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection. Am Heart J 111:768–780CrossRefPubMedGoogle Scholar
  22. Lennox R, Porter DW, Flatt PR, Holscher C, Irwin N, Gault VA (2014) Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology 86:22–30CrossRefPubMedGoogle Scholar
  23. Li J, Benashski SE, Venna VR, McCullough LD (2010) Effects of metformin in experimental stroke. Stroke 41:2645–2652PubMedCentralCrossRefPubMedGoogle Scholar
  24. Li W, Huang R, Shetty RA, Thangthaeng N, Liu R, Chen Z, Sumien N, Rutledge M, Dillon GH, Yuan F, Forster MJ, Simpkins JW, Yang SH (2013) Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis 59:18–25PubMedCentralCrossRefPubMedGoogle Scholar
  25. Liu Y, Tang G, Li Y, Wang Y, Chen X, Gu X, Zhang Z, Yang GY (2014) Metformin attenuates blood–brain barrier disruption in mice following middle cerebral artery occlusion. J Neuroinflammation 11:177PubMedCentralCrossRefPubMedGoogle Scholar
  26. Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103CrossRefPubMedGoogle Scholar
  27. Meijer AJ, Codogno P (2007) AMP-activated protein kinase and autophagy. Autophagy 3:238–240CrossRefPubMedGoogle Scholar
  28. Menard J, Treit D (1998) The septum and the hippocampus differentially mediate anxiolytic effects of R(+)-8-OH-DPAT. Behav Pharmacol 9:93–101CrossRefPubMedGoogle Scholar
  29. Miller JL, Linville TD, Dykens EM (2013) Effects of metformin in children and adolescents with Prader-Willi syndrome and early-onset morbid obesity: a pilot study. J Pediatr Endocrinol Metab 27:23–29Google Scholar
  30. Milot MR, Plamondon H (2009) Time-dependent effects of global cerebral ischemia on anxiety, locomotion, and habituation in rats. Behav Brain Res 200:173–180CrossRefPubMedGoogle Scholar
  31. Mrsulja BB, Mrsulja BJ, Ito U, Walker JT Jr, Spatz M, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. II. Changes in carbohydrates. Acta Neuropathol 33:91–103CrossRefPubMedGoogle Scholar
  32. Niimura M, Takagi N, Takagi K, Mizutani R, Ishihara N, Matsumoto K, Funakoshi H, Nakamura T, Takeo S (2006) Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 26:1354–1365CrossRefPubMedGoogle Scholar
  33. Paiva MA, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2010) Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther 24:25–32PubMedCentralCrossRefPubMedGoogle Scholar
  34. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:H2123–H2134PubMedCentralCrossRefPubMedGoogle Scholar
  35. Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277:747–754CrossRefPubMedGoogle Scholar
  36. Paul SL, Srikanth VK, Thrift AG (2007) The large and growing burden of stroke. Curr Drug Targets 8:786–793CrossRefPubMedGoogle Scholar
  37. Pietrelli A, Lopez-Costa J, Goni R, Brusco A, Basso N (2011) Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 202:252–266CrossRefPubMedGoogle Scholar
  38. Pillow BH, Flavell JH (1985) Intellectual realism: the role of children’s interpretations of pictures and perceptual verbs. Child Dev 56:664–670CrossRefPubMedGoogle Scholar
  39. Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91:409–414CrossRefPubMedGoogle Scholar
  40. Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944–952CrossRefPubMedGoogle Scholar
  41. Polajnar M, Zerovnik E (2014) Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases. J Cell Mol Med 18:1705–1711PubMedCentralCrossRefPubMedGoogle Scholar
  42. Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A (2013) Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke 44:2875–2882Google Scholar
  43. Preitner F, Muzzin P, Revelli JP, Seydoux J, Galitzky J, Berlan M, Lafontan M, Giacobino JP (1998) Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue. Br J Pharmacol 124:1684–1688PubMedCentralCrossRefPubMedGoogle Scholar
  44. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272CrossRefPubMedGoogle Scholar
  45. Rami A, Kogel D (2008) Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy 4:422–426CrossRefPubMedGoogle Scholar
  46. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438CrossRefPubMedGoogle Scholar
  47. Sarti C, Pantoni L, Bartolini L, Inzitari D (2002) Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat. Behav Brain Res 136:13–20CrossRefPubMedGoogle Scholar
  48. Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F (2014) Monitoring of neuronal loss in the hippocampus of Abeta-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neuromol Med 16:175–190CrossRefGoogle Scholar
  49. Shehata M, Inokuchi K (2014) Does autophagy work in synaptic plasticity and memory? Rev Neurosci 25:543–557CrossRefPubMedGoogle Scholar
  50. Skutella T, Probst JC, Renner U, Holsboer F, Behl C (1998) Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85:795–805CrossRefPubMedGoogle Scholar
  51. Spencer SJ, Auer RN, Pittman QJ (2006) Rat neonatal immune challenge alters adult responses to cerebral ischaemia. J Cereb Blood Flow Metab 26:456–467CrossRefPubMedGoogle Scholar
  52. Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara T, Komori K (2015) Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg 61:489–496CrossRefPubMedGoogle Scholar
  53. Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H (2013) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49:276–287CrossRefPubMedGoogle Scholar
  54. Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF (1996) Lifetime cost of stroke in the United States. Stroke 27:1459–1466CrossRefPubMedGoogle Scholar
  55. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2011) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122:253–270CrossRefGoogle Scholar
  56. Wang D, Corbett D (1990) Cerebral ischemia, locomotor activity and spatial mapping. Brain Res 533:78–82CrossRefPubMedGoogle Scholar
  57. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY (2011) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77–87CrossRefGoogle Scholar
  58. Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY (2013) Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol 149:270–280CrossRefPubMedGoogle Scholar
  59. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769CrossRefPubMedGoogle Scholar
  60. Winter B, Juckel G, Viktorov I, Katchanov J, Gietz A, Sohr R, Balkaya M, Hortnagl H, Endres M (2005) Anxious and hyperactive phenotype following brief ischemic episodes in mice. Biol Psychiatry 57:1166–1175CrossRefPubMedGoogle Scholar
  61. Xia DY, Li W, Qian HR, Yao S, Liu JG, Qi XK (2013) Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition. Braz J Med Biol Res 46:580–588PubMedCentralCrossRefPubMedGoogle Scholar
  62. Yu OH, Yin H, Azoulay L (2015) The combination of DPP-4 inhibitors versus sulfonylureas with metformin after failure of first-line treatment in the risk for major cardiovascular events and death. Can J Diabetes. doi: 10.1016/j.jcjd.2015.02.002
  63. Zhao Z, Han F, Yang S, Wu J, Zhan W (2014) Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway. Cancer Lett 358:17–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alireza Sarkaki
    • 1
    • 2
  • Yaghoob Farbood
    • 1
    • 2
  • Mohammad Badavi
    • 1
    • 2
  • Leila Khalaj
    • 3
  • Fariba Khodagholi
    • 4
    • 5
  • Ghorbangol Ashabi
    • 1
    • 2
  1. 1.Department of Physiology, Faculty of MedicineJundishapur University of Medical SciencesAhvazIran
  2. 2.Ahvaz Physiology Research CenterJundishapur University of Medical SciencesAhvazIran
  3. 3.Medical SchoolAlborz University of Medical SciencesAlborzIran
  4. 4.Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations