Skip to main content
Log in

Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health?

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

In the mammalian white matter, glycogen-derived lactate from astrocytes plays a critical role in supporting axon function using the astrocyte-neuron lactate transfer shuttle (ANLTS) system with specialized monocarboxylate transporters (MCTs). A rapid breakdown of glycogen to lactate during increased neuronal activity or low glucose conditions becomes essential to maintain axon function. Therefore astrocytes actively regulate their glycogen stores with respect to ambient glucose levels such that high ambient glucose upregulates glycogen and low levels of glucose depletes glycogen stores. Although lactate fully supports axon function in the absence of glucose and becomes a preferred energy metabolite when axons discharge at high frequency, it fails to benefit axon function during an ischemic episode in white matter. Emerging evidence implies a similar lactate transport system between oligodendrocytes and the axons they myelinate, suggesting another metabolic coupling pathway in white matter. Therefore the conditions that activate this lactate shuttle system and the signaling mechanisms that mediate activation of this system are of great interest. Future studies are expected to unravel the details of oligodendrocyte-axon lactate metabolic coupling to establish how white matter components metabolically cooperate and that lactate may be the universal metabolite to sustain CNS function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alessandri B, Landolt H, Langemann H, Gregorin J, Hall J, Gratzl O (1996) Application of glutamate in the cortex of rats: a microdialysis study. Acta Neurochir Suppl 67:6–12

    CAS  PubMed  Google Scholar 

  • Amaral AI, Meisingset TW, Kotter MR, Sonnewald U (2013) Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol (Lausanne) 4:54

    CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Auer RN (1986) Progress review: hypoglycemic brain damage. Stroke 17:699–708

    Article  CAS  PubMed  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Black JA, Waxman SG (1988) The perinodal astrocyte. Glia 1:169–183

    Article  CAS  PubMed  Google Scholar 

  • Broer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Baltan Tekkök S, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549(2):501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butt AM, Duncan A, Berry M (1994) Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J Neurocytol 23:486–499

    Article  CAS  PubMed  Google Scholar 

  • Chih C, Lipton P, Roberts EL (2001) Do active cerebral neurons really use lactate rather than glucose? TINS 24:573–578

    CAS  PubMed  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  • Frier BM, Fisher BM (1999) Hypoglycemia in clinical diabetes. Wiley, New York

    Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed Central  PubMed  Google Scholar 

  • Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+−ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  CAS  PubMed  Google Scholar 

  • Harris JJ, Attwell D (2012) The energetics of CNS white matter. J Neurosci 32:356–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henn FA, Haljamae H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43:437–443

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  PubMed  Google Scholar 

  • Honegger P, Pardo B (1999) Separate neuronal and glial Na+, K+−ATPase isoforms regulate glucose utilization in response to membrane depolarization and elevated extracellular potassium. J Cereb Blood Flow Metab 19:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholis JG (1964) Glial cells in the central nervous system of the Leech; Their membrane potential and potassium content. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 248:216–222

    CAS  PubMed  Google Scholar 

  • Kuffler SW, Potter DD (1964) Glia in the Leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320

    CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Ergeb Physiol 57:1–90

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787

    CAS  PubMed  Google Scholar 

  • Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9:917–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann N Y Acad Sci 777:380–387

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Sorg O, Naichen Y, Pellerin L, De Rham S, Martin JL (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17:168–171

    CAS  PubMed  Google Scholar 

  • Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8:1003–1011

    CAS  PubMed  Google Scholar 

  • Moody DM, Bell MA, Challa VR (1990) Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. Am J Neuroradiol 11:431–439

    CAS  PubMed  Google Scholar 

  • Munzer JS, Daly SE, Jewell-Motz EA, Lingrel JB, Blostein R (1994) Tissue- and isoform-specific kinetic behavior of the Na, K-ATPase. J Biol Chem 269:16668–16676

    CAS  PubMed  Google Scholar 

  • Nave KA (2010a) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010b) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 71:582–584

    Article  PubMed  Google Scholar 

  • Pellegri G, Rossier C, Magistretti PJ, Martin JL (1996) Cloning, localization and induction of mouse brain glycogen synthase. Brain Res Mol Brain Res 38:191–199

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Bonvento G, Chatton JY, Pierre K, Magistretti PJ (2002) Role of neuron-glia interaction in the regulation of brain glucose utilization. Diabetes Nutr Metab 15:268–273, discussion 273

    CAS  PubMed  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte- neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85:73–81

    Article  CAS  PubMed  Google Scholar 

  • Phelps CH (1972) Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Res 39:225–234

    Article  CAS  PubMed  Google Scholar 

  • Poole RC, Sansom CE, Halestrap AP (1996) Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J 320:817–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ransom BR, Orkand RK (1996) Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. TINS 19:352–358

    CAS  PubMed  Google Scholar 

  • Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Abarca LI, Tabernero A, Medina JM (2001) Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36:321–329

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Vannucci SJ, Maher F (1994) Glucose transporters in mammalian brain. Biochem Soc Trans 22:671–675

    CAS  PubMed  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169

    Article  CAS  PubMed  Google Scholar 

  • Tekkok SB, Brown AM, Ransom BR (2003) Axon function persists during anoxia in mammalian white matter. J Cereb Blood Flow Metab 23:1340–1347

    Article  PubMed  Google Scholar 

  • Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    Article  CAS  PubMed  Google Scholar 

  • Tsacopoulos M, Veuthey AL, Saravelos SG, Perrottet P, Tsoupras G (1994) Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina. J Neurosci 14:1339–1351

    CAS  PubMed  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  CAS  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Stroke Association and the National Institute of Aging (NIA) to SB, as well as a gift from Rose Mary Kubik. Selva Baltan has previously published as Selva Tekkök.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selva Baltan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltan, S. Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health?. Metab Brain Dis 30, 25–30 (2015). https://doi.org/10.1007/s11011-014-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9595-3

Keywords

Navigation