Metabolic Brain Disease

, Volume 28, Issue 2, pp 269–275 | Cite as

Urea cycle defects and hyperammonemia: effects on functional imaging

  • Andrea L. Gropman
  • Morgan Prust
  • Andrew Breeden
  • Stanley Fricke
  • John VanMeter
Original Paper


The urea-cycle disorders (UCDs) are a group of congenital enzyme and carrier deficiencies predisposing to hyperammonemia (HA). HA causes changes in the central nervous system (CNS) including alterations of neurotransmitter function, cell volume, and energy deprivation ultimately leading to cerebral edema. Neuropathological findings of UCDs primarily reflect changes in astrocyte morphology. Neurological features accompanying acute HA include changes in behavior and consciousness in the short term, and potential for impairments in memory and executive function as long-term effects. Plasma measures of ammonia and glutamine, although useful for clinical monitoring, prove poor markers of CNS function. Multimodal neuroimaging has potential to investigate impact on cognitive function by interrogating neural networks, connectivity and biochemistry. As neuroimaging methods become increasingly sophisticated, they will play a critical role in clinical monitoring and treatment of metabolic disease. We describe our findings in UCDs; with focus on Ornithine Transcarbamylase deficiency (OTCD) the only X linked UCD.


Urea cycle disorders Brain MRI 



This consortium, the Urea Cycle Disorders Consortium, is a part of the NIH Rare Diseases Clinical Research Network (RDCRN). Funding and/or programmatic support for this project has been provided by U54HD061221, subproject 5966 from the National Institute of Child Health and Human Development (NICHD) and the NIH Office of Rare Diseases Research (ORDR). The views expressed in written materials or publications do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

This study was also funded by a NCRR career development award K12RR17613 and funded by U54RR019453 and 1M01RR020359-010058. We thank Rebecca R. Seltzer, Ayichew Hailu, and Dr. Bennett Gertz for technical assistance. The authors thank the subjects for their participation, and the NUCDF, in particular, Ms. Cynthia LeMons, for enthusiasm for the study. We thank the study coordinators and Principal investigators of the UCRDC for referral of subjects.


  1. Ahabrach H, Piedrafita B, Ayad A, El Mlili N, Errami M, Felipo V, Llansola M (2010) Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats. J Neurosci Res. 15; 88(7):1605–1614.Google Scholar
  2. Albrecht J (1998) Roles of neuroactive amino acids in ammonia neurotoxicity. J Neurosci Res 51(2):133–138PubMedCrossRefGoogle Scholar
  3. Bachmann C (2002) Mechanisms of hyperammonemia. Clin Chem Lab Med 40(7):653–662PubMedCrossRefGoogle Scholar
  4. Barbey AK, Koenigs M, Grafman J (2012) Dorsolateral prefrontal contributions to human working memory. Cortex. [Epub ahead of print]Google Scholar
  5. Batshaw ML, Msall M, Beaudet AL, Trojak J (1986) Risk of serious illness in heterozygotes for ornithine transcarbamylase deficiency. J Pediatr 108(2):236–241PubMedCrossRefGoogle Scholar
  6. Braissant O, Henry H, Villard AM et al (2002) Ammonium- induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22(22):9810–9820PubMedGoogle Scholar
  7. Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100(Suppl 1):S3–S12PubMedCrossRefGoogle Scholar
  8. Brusilow SW (1995) Urea cycle disorders: clinical paradigm of hyperammonemic encephalopathy. Prog Liver Dis 13:293–309PubMedGoogle Scholar
  9. Brusilow SW, Maestri NE (1996) Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr 43:127–170PubMedGoogle Scholar
  10. Choi DE, Lee KW, Shin YT, Na KR (2012) Hyperammonemia in a patient with late-onset ornithine carbamoyltransferase deficiency. J Korean Med Sci 27(5):556–559PubMedCrossRefGoogle Scholar
  11. Deiana S, Platt B, Riedel G (2011) The cholinergic system and spatial learning. Behav Brain Res 10;221(2):389–411Google Scholar
  12. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67(4):259–279PubMedCrossRefGoogle Scholar
  13. García-Ayllón MS, Cauli O, Silveyra MX, Rodrigo R, Candela A, Compañ A, Jover R, Pérez-Mateo M, Martínez S, Felipo V, Sáez-Valero J (2008) Brain cholinergic impairment in liver failure. Brain 131(Pt 11):2946–2956PubMedCrossRefGoogle Scholar
  14. Gropman AL, Fricke ST, Seltzer RR, Hailu A, Adeyemo A, Sawyer A, van Meter J, Gaillard WD, McCarter R, Tuchman M, Batshaw M, Urea Cycle Disorders Consortium (2008) 1 H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab 95:21–30PubMedCrossRefGoogle Scholar
  15. Gropman AL, Gertz B, Shattuck K, Kahn IL, Seltzer R, Krivitsky L, Van Meter J (2010) Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with partial ornithine transcarbamylase deficiency. AJNR 31(9):1719–1723PubMedCrossRefGoogle Scholar
  16. Gropman AL, Shattuck K, Prust MJ, Seltzer RR, Breeden AL, Hailu A, Rigas A, Hussain R, VanMeter J (2011) Altered neural activation in ornithine transcarbamylase deficiency during executive cognition: An fMRI study. Hum Brain Mapp Nov 23. [Epub ahead of print]Google Scholar
  17. Gyato K, Wray J, Huang ZJ, Yudkoff M, Batshaw ML (2004) Metabolic and neuropsychological phenotype in women heterozygous for ornithine transcarbamylase deficiency. Ann Neurol 55(1):80–86PubMedCrossRefGoogle Scholar
  18. Llansola M, Rodrigo R, Monfort P, Montoliu C, Kosenko E, Cauli O, Piedrafita B, El Mlili N, Felipo V (2007) NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 22(3–4):321–35PubMedCrossRefGoogle Scholar
  19. McCandless SE, Merritt JL, Oster-Granite ML, Seashore MR, Stricker T, Summar M, Waisbren S, Yudkoff M, Batshaw ML (2010) Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol Genet Metab 100(Suppl 1):S97–105PubMedGoogle Scholar
  20. Meyer-Lindenberg A, Nicodemus KK, Egan MF, Callicott JH, Mattay V, Weinberger DR (2008) False positives in imaging genetics. Neuroimage 40:655–661PubMedCrossRefGoogle Scholar
  21. Monfort P, Munoz MD, Kosenko E, Felipo V (2002) Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein 1080 kinase, and cGMP-degrading phosphodiesterase. J Neurosci 1081 22(23): 10116–10122Google Scholar
  22. Monfort P, Munoz MD, Felipo V (2005) Molecular mechanisms of the alterations in NMDA receptor-dependent long-term potentiation in hyperammonaemia. Metab Brain Dis 20(4):265–274PubMedCrossRefGoogle Scholar
  23. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED (1984) Neurologic outcome in children with inborn errors of urea synthesis. N Engl J Med 310:1500–1505PubMedCrossRefGoogle Scholar
  24. Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6:24PubMedCrossRefGoogle Scholar
  25. Pridmore CL, Clarke JT, Blaser S (1995) Ornithine transcarbamylase deficiency in females: an often overlooked cause of treatable encephalopathy. J Child Neurol 10(5):369–374PubMedCrossRefGoogle Scholar
  26. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRefGoogle Scholar
  27. Ratnakumari L, Qureshi IA, Butterworth RF (1994) Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Metab Brain Dis 9(1):43–51PubMedCrossRefGoogle Scholar
  28. Seminara J, Tuchman M, Krivitzky L, Krischer J, Lee HS, Lemons C, Baumgartner M, Cederbaum S, Diaz GA, Feigenbaum A, Gallagher RC, Harding CO, Kerr DS, Lanpher B, Lee B, Lichter-Konecki U, McCandless SE, Merritt JL, Oster-Granite ML, Seashore MR, Stricker T, Summar M, Waisbren S, Yudkoff M, Batshaw ML (2010) Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol Genet Metab 100(Suppl 1):S97–S105Google Scholar
  29. Smith W, Kishnani PS, Lee B, Singh RH, Rhead WJ, Sniderman King L, Smith M, Summar M (2005) Urea cycle disorders: clinical presentation outside the newborn period. Crit Care Clin 21(4 Suppl):S9–17PubMedCrossRefGoogle Scholar
  30. Skowrońska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21(2):236–244PubMedCrossRefGoogle Scholar
  31. Spada M, Guardamagna O, Rabier D, van der Meer SB, Parvy P, Bardet J, Ponzone A, Saudubray JM (1994) Recurrent episodes of bizarre behavior in a boy with ornithine transcarbamylase deficiency: diagnostic failure of protein loading and allopurinol challenge tests. J Pediatr 125(2):249–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrea L. Gropman
    • 1
    • 2
  • Morgan Prust
    • 1
    • 2
  • Andrew Breeden
    • 1
    • 2
  • Stanley Fricke
    • 1
    • 2
  • John VanMeter
    • 1
    • 2
  1. 1.Department of Neurology, Children’s National Medical CenterGeorge Washington University of the Health SciencesWashingtonUSA
  2. 2.Center for Functional and Molecular ImagingGeorgetown UniversityWashingtonUSA

Personalised recommendations