Skip to main content

Advertisement

Log in

A ketogenic diet did not prevent effects on the ectonucleotidases pathway promoted by lithium-pilocarpine-induced status epilepticus in rat hippocampus

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A Ketogenic Diet (KD) mimics the anticonvulsant effects of fasting, which are known to suppress seizures. The purinergic system has been investigated in the matter of epilepsy development, especially the nucleoside adenosine, which has been considered a natural brain anticonvulsant. During epileptic seizures, extracellular adenosine concentration rises rapidly to micromolar levels. Adenosine can exert its anticonvulsant functions, after its release by nucleoside bidirectional transport, or by production through the sequential catabolism of ATP by ectonucleotidases, such as E-NTPDases (ectonucleoside triphosphate diphosphohydrolases) and ecto-5′-nucleotidase. Here, we have investigated the effect of a ketogenic diet on the nucleotide hydrolysis and NTPDases expression in the lithium-pilocarpine (Li-Pilo) model of epilepsy. For the induction of Status Epileticus (SE), 21-day-old female Wistar rats received an i.p. injection of lithium chloride (127 mg/kg) and 18–19 h later an i.p. injection of pilocarpine hydrochloride (60 mg/kg). The control groups received an injection of saline. After induction of SE, the control and Li-Pilo groups received standard or ketogenic diets for 6 weeks. The lithium-pilocarpine exposure affected the ATP (a decrease of between 8 % and 16 %) and ADP (an increase of between 18 % and 22 %) hydrolysis in both groups whereas the diet did not impact the nucleotide hydrolysis. NTPDase2 and 3 mRNA expressions decreased in the Li-Pilo group (41 % and 42 %). This data highlights the participation of the purinergic system in the pathophysiology of this model of epilepsy, since nucleotide hydrolysis and NTPDase expressions were altered by Li-Pilo exposure, with no significant effects of the ketogenic diet. However, the interaction between purinergic signaling and a ketogenic diet on epilepsy still needs to be better elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signaling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Battastini AM, Da Rocha JB, Barcellos CK (1991) Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem Res 16:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Berman RF, Fredholm BB, Aden U, O’Connor WT (2000) Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res 872(1–2):44–53

    Article  PubMed  CAS  Google Scholar 

  • Bianchi V, Spychala J (2003) Mammalian 5′-nucleotidases. J Biol Chem 278(47):46195–46198

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11:25–36

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Stewart K-A (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 78(12):1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Bonan CD, Walz R, Pereira GS, Worm PV, Battastini AM, Cavalheiro EA, Izquierdo I, Sarkis JJ (2000) Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res 39(3):229–238

    Article  PubMed  CAS  Google Scholar 

  • Borowicz KK, Luszczki J, Czuczwar SJ (2002) 2-Chloroadenosine, a preferential agonist of adenosine A1 receptors, enhances the anticonvulsant activity of carbamazepine and clonazepam in mice. Eur Neuropsychopharmacol 12:173–179

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bruno AN, Oses JP, Amaral O, Coitinho A, Bonan CD, Battastini AM, Sarkis JJ (2003) Changes in nucleotide hydrolysis in rat blood serum induced by pentylenetetrazol-kindling. Brain Res Mol Brain Res 114(2):140–145

    Article  PubMed  Google Scholar 

  • Cavalheiro EA (1995) The pilocarpine model of epilepsy. Ital J Neurol Sci 16:33–37

    Article  PubMed  CAS  Google Scholar 

  • Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Fihlo LS, Bortolotto A, Turski L (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 37:43–58

    Article  CAS  Google Scholar 

  • Chan K, Delfert D, Junges KD (1986) A direct colorimetric assay for Ca2+-ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Da Silveira VG, Cognato GP, Müller AP, Figueiró F, Bonan DC, Perry MLS, Battastini AMO (2010) Effect of ketogenic diet on nucleotide hydrolysis and hepatic enzymes in blood serum of rats in a lithium-pilocarpine-induced status epilepticus. Metab Brain Dis 25:211–217

    Article  PubMed  CAS  Google Scholar 

  • Dubé C, Da Silva Fernandes MJ, Nehlig A (2001a) Age-dependent consequences of seizures and the development of temporal lobe epilepsy in the rat. Dev Neurosci 23:219–223

    Article  PubMed  Google Scholar 

  • Dubé C, Boyet S, Marescaux C, Nehlig A (2001b) Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 167:227–241

    Article  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    PubMed  CAS  Google Scholar 

  • Guzman M, Blazquez C (2001) Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 12:169–173

    Article  PubMed  CAS  Google Scholar 

  • Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular localization of 5′-nucleotidase in rat brain. J Neurochem 43:971–978

    Article  PubMed  CAS  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 2388:323–325

    Article  Google Scholar 

  • Janigro D (1999) Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 37(3):223–232

    Article  PubMed  CAS  Google Scholar 

  • Jutila L, Ylinen A, Partanen K, Alafuzoff I, Mervaala E, Partanen J, Vapalahti M, Vainio P, Pitkänen A (2001) MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. AJNR Am J Neuroradiol 22(8):1490–1501

    PubMed  CAS  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    Article  PubMed  CAS  Google Scholar 

  • Langston JL, Myers TM (2011) Diet composition modifies the toxicity of repeated soman exposure in rats. Neurotoxicology 32(6):907–915

    Article  PubMed  CAS  Google Scholar 

  • Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsivant/neuroprotective effects of ketogenic diet? Trends in Neuroscience 31(6):273–278

    Google Scholar 

  • Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger J, Aronica E, Boison D (2011) A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest 121(7):2679–2683

    Article  PubMed  CAS  Google Scholar 

  • Morrisett RA, Jope RS, Snead OC 3rd (1987a) Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp Neurol 97(1):193–200

    Article  PubMed  CAS  Google Scholar 

  • Morrisett RA, Jope RS, Snead OC 3rd (1987b) Status epilepticus is produced by administration of cholinergic agonists to lithium-treated rats: comparison with kainic acid. Exp Neurol 98(3):594–605

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43(4):1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa M, Kodama S, Matsuo T (1983) Effects of ketogenic diet on electroconvulsive threshold and brain contents of adenosine nucleotides. Brain Dev 5(4):375–380

    Article  PubMed  CAS  Google Scholar 

  • Oses JP, Viola GG, de Paula Cognato G, Júnior VH, Hansel G, Böhmer AE, Leke R, Bruno AN, Bonan CD, Bogo MR, Portela LV, Souza DO, Sarkis JJ (2007) Pentylenetetrazol kindling alters adenine and guanine nucleotide catabolism in rat hippocampal slices and cerebrospinal fluid. Epilep Res 75(2–3):104–111

    Article  CAS  Google Scholar 

  • Patel S, Chapman AG, Millan MH, Meldrum BS (1988) Epilepsy and excitatory amino acid antagonists. In: Lodge D (ed) Excitatory amino acids in health and disease. Wiley, London, pp 353–378

    Google Scholar 

  • Pedata F, Corsi C, Melani A, Bordoni F, Latini S (2001) Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 939:74–84, Review

    Article  PubMed  CAS  Google Scholar 

  • Rigoulot MA, Koning E, Ferrandon A, Nehlig A (2004) Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy. J Pharmacol Exp Ther 308:787–795

    Article  PubMed  CAS  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin PA (1999) Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Res 37(3):171–180

    Article  PubMed  CAS  Google Scholar 

  • Shukla V, Zimmermann H, Wang LP, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80:600–610

    Article  PubMed  CAS  Google Scholar 

  • Tagliabue A, Bertoli S, Trentani C, Borrelli P, Veggiotti P (2012) Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: A 6-month prospective observational study. Clin Nutr 31(2):246–249

    Google Scholar 

  • Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171

    Article  PubMed  CAS  Google Scholar 

  • Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58:16

    Article  Google Scholar 

  • Wieraszko A, Seyfried TN (1989) Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci Lett 106:287–293

    Article  PubMed  CAS  Google Scholar 

  • Wilder RM (1921) The effect of ketonemia on the course of epilepsy. Mayo Clin Bull 2:307–308

    Google Scholar 

  • Wilot LC, Da Silva RS, Ferreira OJ, Bonan CD, Sarkis JJF, Rocha E, Battastini AMO (2004) Chronic treatment with lithium increases the ecto-nucleotidase activities in rat hippocampal synatosomes. Neurosc Letters 368:167–170

    Article  CAS  Google Scholar 

  • Zhao Q, Stafstrom CE, Fu DD, Hu Y, Holmes GL (2004) Detrimental effects of the ketogenic diet on cognitive function in rats. Pediatric Res 55(3):498–506

    Google Scholar 

  • Zimmermann H (2001) Ecto-nucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Vanessa Gass da Silveira was recipient of a CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Oliveira Battastini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silveira, V.G., da Silva, R.S., de Paula Cognato, G. et al. A ketogenic diet did not prevent effects on the ectonucleotidases pathway promoted by lithium-pilocarpine-induced status epilepticus in rat hippocampus. Metab Brain Dis 27, 471–478 (2012). https://doi.org/10.1007/s11011-012-9333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9333-7

Keywords

Navigation