Skip to main content

Advertisement

Log in

Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome in vivo

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ornithine, ammonia and homocitrulline are the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, a genetic disorder characterized by neurological regression whose pathogenesis is still not understood. The present work investigated the in vivo effects of intracerebroventricular administration of ornithine and homocitrulline in the presence or absence of hyperammonemia induced by intraperitoneal urease treatment on a large spectrum of oxidative stress parameters in cerebral cortex from young rats in order to better understand the role of these metabolites on brain damage. Ornithine increased thiobarbituric acid-reactive substances (TBA-RS) levels and carbonyl formation and decreased total antioxidant status (TAS) levels. We also observed that the combination of hyperammonemia with ornithine resulted in significant decreases of sulfhydryl levels, reduced glutathione (GSH) concentrations and the activities of catalase (CAT) and glutathione peroxidase (GPx), highlighting a synergistic effect of ornithine and ammonia. Furthermore, homocitrulline caused increases of TBA-RS values and carbonyl formation, as well as decreases of GSH concentrations and GPx activity. Hcit with hyperammonemia (urease treatment) decreased TAS and CAT activity. We also showed that urease treatment per se was able to enhance TBA-RS levels. Finally, nitric oxide production was not altered by Orn and Hcit alone or in combination with hyperammonemia. Our data indicate that the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome provoke lipid and protein oxidative damage and a reduction of the antioxidant defenses in the brain. Therefore, it is presumed that oxidative stress may represent a relevant pathomechanism involved in the brain damage found in patients affected by this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. doi:10.1016/S0304-3940(01)01636-6

    Article  PubMed  CAS  Google Scholar 

  • Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK (2008) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci 15(264):187–194. doi:10.1016/j.jns.2007.08.003

    Article  Google Scholar 

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Zanatta A, Viegas CM, Dutra-Filho CS, Wajner M (2009) Evidence that the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome induce oxidative stress in brain of young rats. Int J Dev Neurosci 27:635–641. doi:10.1016/j.ijdevneu.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  • Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29(6):783–788. doi:10.1111/j.1478-3231.2009.02034.x

    Article  PubMed  Google Scholar 

  • Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA, Valle D (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158. doi:10.1038/9658

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38. doi:10.1016/S0009-8981(03)00003-2

    Article  PubMed  CAS  Google Scholar 

  • Diemer NH, Laursen H (1977) Glial cell reactions in rats with hyperammoniemia induced by urease or porto-caval anastomosis. Acta Neurol Scand 55(6):425–442

    Article  PubMed  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1996) Oxygen radicals and nervous system. Trends Neurosci 8:22–26

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  • Haust MD, Gatfield PD, Gordon BA (1981) Ultrastructure of hepatic mitochondria in a child with hyperornithinemia, hyperammonemia, and homocitrullinuria. Hum Pathol 12:212–222

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Meier-Augenstein W, Stöckler S, Surtees R, Rating D, Nyhan WL (1993) Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis 16(4):648–669

    Article  PubMed  CAS  Google Scholar 

  • Jafari M (2007) Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 231:30–39

    Article  PubMed  CAS  Google Scholar 

  • Korman SH, Kanazawa N, Abu-Libdeh B, Gutman A, Tsujino S (2004) Hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome with evidence of mitochondrial dysfunction due to a novel SLC25A15 (ORNT1) gene mutation in a Palestinian family. J Neurol Sci 218:53–58. doi:10.1016/j.jns.2003.10.017

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27(6):637–644

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981(1–2):193–200. doi:10.1016/S0006-8993(03)03035-X

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DM, Aretha CW, Geddes TJ (1999) Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 19:10289–10294

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook for Oxygen Radical Research, 1st edn. CRC Press, Boca Raton, FL, pp 243–247

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: Glial localization in brain. Science 195:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Metoki K, Hommes FA, Dyken P, Kelloes C, Trefz J (1984) Ultrastructural changes in fibroblast mitochondria of a patient with HHH-syndrome. J Inherit Metab Dis 7:147–150

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  • Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66(2):282–288. doi:10.1002/jnr.1222

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Gonzálvez JA, García-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681

    Google Scholar 

  • NIH publication number 85–23 (1996), Revised guide for the care and use of laboratory animals NIH guide volume 25, number 28

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press

  • Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F, Häussinger D (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55(7):758–771. doi:10.1002/glia.20504

    Article  PubMed  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Santorelli FM, Bertini E, Boldrini R, Meli C, Donati A, Burlina AB, Rizzo C, Di Capua M, Fariello G, Dionisi-Vici C (2001) Clinical and molecular findings in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Neurology 57:911–914

    Article  PubMed  CAS  Google Scholar 

  • Schultz V, Lowenstein JM (1978) The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J Biol Chem 253:1938–1943

    PubMed  CAS  Google Scholar 

  • Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260(1–2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien YH, Loguercio C, de Baulny HO, Nassogne MC, Schiff M, Deodato F, Parenti G, Rutledge SL, Vilaseca MA, Melone MA, Scarano G, Aldamiz-Echevarría L, Besley G, Walter J, Martinez-Hernandez E, Hernandez JM, Pierri CL, Palmieri F, Santorelli FM (2009) Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 30(5):741–748. doi:10.1002/humu.20930

    Article  PubMed  CAS  Google Scholar 

  • Valle D, Simell O (2001) The hyperornithinemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and Molecular Basis of Inherited Diseases, 8th edn. McGraw-Hill, New York, pp 1857–1896

    Google Scholar 

  • Viegas CM, Zanatta A, Knebel LA, Schuck PF, Tonin AM, Ferreira Gda C, Amaral AU, Dutra Filho CS, Wannmacher CM, Wajner M (2009) Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res 1291:102–112. doi:10.1016/j.brainres.2009.07.021

    Article  PubMed  CAS  Google Scholar 

  • Viegas CM, Busanello EN, Tonin AM, de Moura AP, Grings M, Ritter L, Schuck PF, Ferreira Gda C, Sitta A, Vargas CR, Wajner M (2011) Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Brain Res 19(1369):235–244. doi:10.1016/j.brainres.2010.10.112

    Article  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  PubMed  CAS  Google Scholar 

  • Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110

    PubMed  CAS  Google Scholar 

  • Yu TW, Ong CN (1999) Lag-time measurement of antioxidant capacity using myoglobin and 2,2′-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid): rationale, application and limitation. Anal Biochem 275:217–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of CNPq, PROPESq/UFRGS, FAPERGS, PRONEX, FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00 and Instituto Nacional de Ciência e Tecnologia- Neurotoxicidade e Neuroproteção (INCT-EN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viegas, C.M., Tonin, A.M., Zanatta, Â. et al. Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome in vivo. Metab Brain Dis 27, 521–530 (2012). https://doi.org/10.1007/s11011-012-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9327-5

Keywords

Navigation