Metabolic Brain Disease

, Volume 25, Issue 4, pp 391–396 | Cite as

Brain energy metabolism parameters in an animal model of diabetes

  • Luciane B. Ceretta
  • Gislaine Z. Réus
  • Gislaine T. Rezin
  • Giselli Scaini
  • Emílio L. Streck
  • João Quevedo
Original Paper


A growing body of evidence has indicated that altered mitochondrial function may be involved in mechanism for the development of diabetic complications. Thus, we investigated whether animal model of diabetes induced by alloxan alters energy metabolism parameters. Wistar rats received one single injection of alloxan (250 mg/kg) and after 15 days we evaluated mitochondrial respiratory chain complexes I, II, II-III and IV, creatine kinase and citrate synthase activities in prefrontal cortex, hippocampus and striatum. We observed that animal model of diabetes induced by alloxan increased complexes I and IV activities in hippocampus, complexes II and II-III activities in prefrontal cortex and striatum and complex IV in prefrontal cortex; however decreased complex IV activity in striatum. Moreover, diabetes rats decreased creatine kinase activity in striatum and increased citrate synthase activity in hippocampus. In conclusion, this study indicates that the alteration in mitochondrial function is probably involved in the pathophysiology of diabetes.


Mitochondrial respiratory chain Creatine kinase Citrate synthase Diabetes 



This study was supported in part by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq-Brazil – JQ, ELS), from the Instituto Cérebro e Mente (JQ) and UNESC (JQ and ELS). JQ and ELS are recipients of CNPq (Brazil) Productivity fellowships. GZR is holder of a FAPESC/CAPES studentship.


  1. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149CrossRefPubMedGoogle Scholar
  2. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurological ilnesses? Ann Neurol 31:119–130CrossRefPubMedGoogle Scholar
  3. Behr GA, da Silva EG, Ferreira AR, Cerskib CTS, Dal-Pizzol F, Moreira JCF (2008) Pancreas b-cells morphology, liver antioxidant enzymes and liver oxidative parameters in alloxan-resistant and alloxan-susceptible Wistar rats: a viable model system for the study of concepts into reactive oxygen species. Fundam Clin Pharmacol 22:657–666CrossRefPubMedGoogle Scholar
  4. Bellush LL, Reid SG, North D (1991) The functional significance of biochemical alterations in streptozotocin-induced diabetes. Physiol Behav 50:973–981CrossRefPubMedGoogle Scholar
  5. Biessels GJ, Van Der Heide LP, Kamal A, Bleys RL, Gispen WH (2002) Aging and diabetes: implications for brain function. Eur J Pharmacol 441:1–14CrossRefPubMedGoogle Scholar
  6. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796CrossRefPubMedGoogle Scholar
  7. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316CrossRefPubMedGoogle Scholar
  8. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC (2000) Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes 49:2170–2177CrossRefPubMedGoogle Scholar
  9. De La Monte S (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42:475–481PubMedGoogle Scholar
  10. Dickinson BC, Srikun D, Chang CJ (2009) Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol 14:1–7Google Scholar
  11. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53:160–169CrossRefPubMedGoogle Scholar
  12. El-Serag HB, Richardson PA, Everhart JE (2001) The role of diabetes in hepatocellular carcinoma: a case-control study among United States Veterans. Am J Gastroenterol 96:2462–2467CrossRefPubMedGoogle Scholar
  13. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26CrossRefPubMedGoogle Scholar
  14. Franconi F, Seghieri G, Canua S, Straface E, Campesi I, Malorni W (2008) Are the available experimental models of type 2 diabetes appropriate for a gender perspective? Pharmacol Res 57:6–18CrossRefPubMedGoogle Scholar
  15. Gavard JA, Lustman PJ, Clouse RE (1993) Prevalence of depression in adults with diabetes. Diab Care 16:1167–1178CrossRefGoogle Scholar
  16. Giuffrida FM, Reis AF (2005) Genetic and clinical characteristics of maturityonset diabetes of the young. Diabetes Obes Metab 7:318–326CrossRefPubMedGoogle Scholar
  17. Haeser AS, Sittac A, Barschakc AG, Deonc M, Bardenb AT, Schmittb GO, Landgraff S, Gomeze R, Barrose HMT, Vargasa CR (2007) Oxidative stress parameters in diabetic rats submitted to forced swimming test: the clonazepam effect. Brain Res 1154:137–143CrossRefGoogle Scholar
  18. Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, Beasley P, Patt YZ (2002) Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology 36:1206–1213CrossRefPubMedGoogle Scholar
  19. Heikkila RE, Winston B, Cohen G, Barden H (1976) Alloxan induced diabetes, evidence for hydroxyl radicals as a cytotoxic intermediate. Biochem Pharmacol 25:1085–1092CrossRefPubMedGoogle Scholar
  20. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007a) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473CrossRefPubMedGoogle Scholar
  21. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007b) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473CrossRefPubMedGoogle Scholar
  22. Hernández-Alvarez MI, Chiellini C, Manco M, Naon D, Liesa M, Palacín M, Mingrone G, Zorzano A (2009) Genes involved in mitochondrial biogenesis/function are induced in response to bilio-pancreatic diversion in morbidly obese individuals with normal glucose tolerance but not in type 2 diabetic patients. Diabetologia 52:1618–1627CrossRefPubMedGoogle Scholar
  23. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 7:597–604CrossRefPubMedGoogle Scholar
  24. Imaeda V, Aoki T, Kondo Y, Hori M, Ogata M, Obayashi H, Hasegawa G, Nakamura N, Tokuda K, Nishino H, Yoshikawa T, Kondo M (2001) Protective effects of fluvastatin against reactive oxygen species induced DNA damage and mutagenesis. Free Radic Res 34:33–44CrossRefPubMedGoogle Scholar
  25. Jamal MM, Yoon E, Vega KJ, Hashemzadeh M, Chang KJ (2009) Diabetes mellitus as a risk factor for gastrointestinal câncer among American veterans. World J Gastroenterol 15:5274–5278CrossRefPubMedGoogle Scholar
  26. Johannsen DL, Ravussin E (2009) The role of mitochondria in health and disease. Curr Opin Pharmacol 9:780–786CrossRefPubMedGoogle Scholar
  27. Junior LAF, Kretzmann NA, Porawski M, Dias AS, Marroni NAP (2009) Experimental diabetes mellitus: oxidative stress and changes in lung structure. J Bras Pneumol 35:788–791Google Scholar
  28. Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950CrossRefPubMedGoogle Scholar
  29. Khuchua ZA, Qin W, Boero J, Cheng J, Payne RM, Saks VA, Strauss AW (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996CrossRefPubMedGoogle Scholar
  30. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diab Care 21:1414–1431CrossRefGoogle Scholar
  31. Liu S, Okada T, Assmann A, Soto J, Liew CW, Bugger H, Shirihai OS, Abel ED, Kulkarni RN (2009) Insulin signaling regulates mitochondrial function in pancreatic beta-cells. PLoS ONE 4:7983CrossRefGoogle Scholar
  32. Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  33. Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB (2009) Molecular and metabolic evidence for mitochondrial defects associated with {beta}-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 53:448–459Google Scholar
  34. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41:1776–1804CrossRefPubMedGoogle Scholar
  35. Marco R, Pestaña A, Sebastian J, Sols A (1974) Oxaloacetate metabolic crossroads in liver. Enzyme compartmentation and regulation of gluconeogenesis. Mol Cell Biochem 3:53–70CrossRefPubMedGoogle Scholar
  36. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMedGoogle Scholar
  37. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593CrossRefPubMedGoogle Scholar
  38. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686CrossRefGoogle Scholar
  39. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471CrossRefPubMedGoogle Scholar
  40. Rabol R, Højberg PM, Almdal T, Boushel R, Haugaard SB, Madsbad S, Dela F (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378CrossRefPubMedGoogle Scholar
  41. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14CrossRefPubMedGoogle Scholar
  42. Ritov VB, Menshikova EV, Azuma K, Wood RJ, Toledo FG, Goodpaster BH, Ruderman NB, Kelley DE (2009) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. in pressGoogle Scholar
  43. Robles GI, Singh-Franco D (2009) A review of exenatide as adjunctive therapy in patients with type 2 diabetes. Drug Des Devel Ther 21:219–240CrossRefGoogle Scholar
  44. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51CrossRefPubMedGoogle Scholar
  45. Schiff M, Loublier S, Coulibaly A, Bénit P, Ogier de Baulny H, Rustin P (2009) Mitochondria and diabetes mellitus: untangling a conflictive relationship? J Inherit Metab Dis 32:684–698CrossRefPubMedGoogle Scholar
  46. Schlattner U, Wallimann T (2000) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 275:17314–17320CrossRefPubMedGoogle Scholar
  47. Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, Jeneson JA, Backes WH, van Echteld CJ, van Engelshoven JM, Mensink M, Schrauwen P (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120CrossRefPubMedGoogle Scholar
  48. Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610PubMedGoogle Scholar
  49. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview Indian. J Med Res 125:451–472Google Scholar
  50. Szendroedi J, Schmid AI, Chmelik M, Toth C, Brehm A, Krssak M, Nowotny P, Wolzt M, Waldhausl W, Roden M (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:154CrossRefGoogle Scholar
  51. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546Google Scholar
  52. Téllez-Zentero JF, Cardiel MH (2002) Risk factors associated whit depression in patients with type 2 diabetes mellitus. Arch Med Res 33:53–60CrossRefGoogle Scholar
  53. Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, Borch-Johnsen K, Olsen JH (1997) Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 89:1360–1365CrossRefPubMedGoogle Scholar
  54. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Luciane B. Ceretta
    • 1
  • Gislaine Z. Réus
    • 1
  • Gislaine T. Rezin
    • 2
  • Giselli Scaini
    • 2
  • Emílio L. Streck
    • 2
  • João Quevedo
    • 1
  1. 1.Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations