Skip to main content

Advertisement

Log in

Morphological changes of rat astrocytes induced by liver damage but not by manganese chloride exposure

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Liver cirrhosis is a common cause of death around the world. One of its more severe complications is hepatic encephalopathy. As a consequence of liver impairment, manganese (Mn) and other substances accumulate in the brain. Astrocytic morphological changes have been found in postmortem brains of cirrhotic patients. In this study we used a model of cirrhosis induced by bile duct ligation and Mn accumulation by exposing rats to MnCl2 (1 mg Mn/ml) in their drinking water. Four experimental groups were used: Sham, Sham plus Mn treatment, BDL (bile duct ligated) and BDL plus Mn treatment. Brain Mn was measured by atomic absorption spectrophotometry in cortex, striatum and globus pallidus. Altered and normal astrocytes were counted in the same brain areas. Brain Mn was highest in rats of the BDLMn group. An increased number of altered astrocytes was found only in BDL groups, Mn did not modify this effect. No changes were found in the total number of astrocytes. According to our results, biliary obstruction induced an increase in the number of altered astrocytes since early stages of cirrhosis and Mn did not affect this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aschner M, Gannon M (1993) Manganese (Mn) transport across the blood-brain barrier: Saturable and dependent transport mechanisms. Brain Res Bull 33:345–349

    Article  Google Scholar 

  • Aschner M, Dorman DC (2006) Manganese: pharmacokinetics and molecular mechanisms of brain uptake. Toxicol Rev 25:147–154

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20:173–180

    PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Grabl M, Walter HE (1983) Enzymes. In: Bergmeyer J, Grabl M (eds) Methods of enzymatic analysis. Verlag-Chemie, Weinheim, pp 269–270

    Google Scholar 

  • Bosetti C, Levi F, Lucchini F, Zatonski WA, Negri E, La Vecchia C (2007) Worldwide mortality from cirrhosis: an update to 2002. J Hepatol 46:827–839

    Article  PubMed  Google Scholar 

  • Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32(1 Suppl):171–180

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2001) Neurotransmitter dysfunction in hepatic encephalopathy: new approaches and new findings. Metab Brain Dis 16:55–65

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look to ammonia. Metab Brain Dis 17:221–227

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44:1583–1586

    PubMed  CAS  Google Scholar 

  • Chia SE, Foo SC, Gan SL, Jeyaratnam J, Tian CS (1993) Neurobehavioral functions among workers exposed to manganese ore. Scand J Work Environ Health 19:264–270

    PubMed  CAS  Google Scholar 

  • Glossman M, Neville DM (1972) Gamma-Glutamyl transferase in kidney brush border membranes. FEBS Lett 19:340–344

    Article  Google Scholar 

  • Hazell AS (2002) Astrocytes and manganese neurotoxicity. Neurochem Int 41:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS, Normandin L, Norenberg MD, Kennedy G, Jae-Hyuk Y (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396:167–171

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Muñoz R, Díaz-Muñoz M, Suárez-Cuenca J, Trejo-Solís C, López V, Sánchez-Sevilla L, Yáñez L, Chagoya V (2001) Adenosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. Hepatology 34:677–687

    Article  PubMed  Google Scholar 

  • Jover R, Rodrigo R, Felipo V, Insausti R, Sáez-Valero J, García-Ayllón MS, Suárez I, Candela A, Compañ A, Esteban A, Cauli O, Ausó E, Rodríguez E, Gutiérrez A, Girona E, Erceg S, Berbel P, Pérez-Mateo M (2006) Brain edema and inflamatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy. Hepatology 43:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Kountouras J, Billing BH, Scheuer PJ (1984) Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 65:305–311

    PubMed  CAS  Google Scholar 

  • Kulisevsky J, Pujol J, Junque C, Deus J, Balanzo J, Capdevila A (1993) MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: two different MRI patterns of clinical deterioration? Neurology 43:2570–2573

    PubMed  CAS  Google Scholar 

  • Ledig M, Tholey G, Megias-Megias L, Kopp P, Wedler F (1991) Combined effects of ethanol and manganese on cultured neurons and glia. Neurochem Res 16:591–596

    Article  PubMed  CAS  Google Scholar 

  • Levy BS, Nassetta WJ (2003) Neurologic effects of manganese in humans. Int J Occup Environ Health 9:153–163

    PubMed  CAS  Google Scholar 

  • Montes S, Alcaraz-Zubeldia M, Muriel P, Ríos C (2001) Striatal manganese accumulation induces changes in dopamine metabolism in the cirrhotic rat. Brain Res 891:123–129

    Article  PubMed  CAS  Google Scholar 

  • Montes S, Alcaraz-Zubeldia M, Ríos C, Muriel P (2002) A method to induce manganese accumulation in the brain of the cirrhotic rat and its evaluation. Brain Res Brain Res Protoc 9:9–15

    Article  PubMed  CAS  Google Scholar 

  • Montes S, Alcaraz-Zubeldia M, Muriel P, Ríos C (2003) Role of Manganese accumulation in increased brain glutamine of the cirrhotic rat. Neurochem Res 28:911–917

    Article  PubMed  CAS  Google Scholar 

  • Muriel P (1998) Nitric oxide protection of rat liver from lipid peroxidation, collagen accumulation, and liver damage induced by carbon tetrachloride. Biochem Pharmacol 56:773–779

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD (1981) The astrocyte in liver disease. Adv Cell Neurobiol 2:303–352

    Google Scholar 

  • Norenberg MD, Lapham LW, Nichols FA, May AG (1974) An experimental model for the study of hepatic encephalopathy. Arch Neurol 31:106–109

    PubMed  CAS  Google Scholar 

  • Normandin L, Hazell A (2002) Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis 17:375–387

    Article  PubMed  CAS  Google Scholar 

  • Papavasiliou PS, Miller ST, Cotzias GC (1966) Role of liver in regulating distribution and excretion of manganese. Am J Physiol 211:211–216

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Pentschew A, Ebner F, Kovatch R (1963) Experimental manganese encephalopathy in monkeys. A preliminary report. J Neuropathol Exp Neurol 22:488–489

    Article  PubMed  CAS  Google Scholar 

  • Pomier-Layrargues G, Spahr L, Butterworth RF (1995) Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:735

    Article  PubMed  CAS  Google Scholar 

  • Popper H, Zak FG (1958) Pathologic aspects of cirrhosis. Am J Med 24:593–619

    Article  PubMed  CAS  Google Scholar 

  • Quero JC, Schalm SW (1996) Subclinical hepatic encephalopathy. Semin Liver Dis 16:321–328

    Article  PubMed  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    PubMed  CAS  Google Scholar 

  • Rodrigo R, Montoliu C, Chatauret N, Butterworth RF, Behrends S, del Olmo JA, Serra MA, Rodrigo JM, Erceg S, Felipo V (2004) Alterations in soluble guanylate cyclase content and modulation by nitric oxide in liver disease. Neurochem Int 45:947–953

    Article  PubMed  CAS  Google Scholar 

  • Sistrunk SC, Ross MK, Filipov NM (2007) Direct effects of manganese compounds on dopamine and its metabolite Dopac: An in vitro study. Environ Toxicol Pharmacol 23:286–296

    Article  PubMed  CAS  Google Scholar 

  • Sloot WN, Gramsbergen JB (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 657:124–132

    Article  PubMed  CAS  Google Scholar 

  • vom Dahl S, Kircheis G, Häussinger D (2001) Hepatic encephalopathy as a complication of liver disease. World J Gastroenterol 7:152–156

    Google Scholar 

  • Weissenborn K, Ehrenheim CH, Hori A, Kubicka S, Manns MP (1995) Pallidal lesions in patients with liver cirrhosis: clinical and MRI evaluation. Metab Brain Dis 10:219–231

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Ohno S, Okayasu I, Okeda R, Hatakeyama S, Watanabe H, Ushio K, Tsukagoshi H (1986) Chronic manganese poisoning: a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol 70:273–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank to Biol. Mario Moreno, Mr.Ramón Hernández, and Mr. Benjamín Salinas for their excellent technical assistance.

S. Rivera-Mancía wants to thank to the Biomedical Research Ph D Program, to the Biomedical Research Institute and to the National Autonomous University of Mexico for their support to carry out this work.

This work was supported by CONACYT grant 51541. Susana Rivera-Mancía received a fellowship from CONACYT (203330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Mancía, S., Montes, S., Méndez-Armenta, M. et al. Morphological changes of rat astrocytes induced by liver damage but not by manganese chloride exposure. Metab Brain Dis 24, 243–255 (2009). https://doi.org/10.1007/s11011-009-9138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9138-5

Keywords

Navigation