Metabolic Brain Disease

, 22:89 | Cite as

Immunohistochemical Study on Distribution of NF-κB and p53 in Gerbil Hippocampus after Transient Cerebral Ischemia: Effect of Pitavastatin

  • Hiroko Tounai
  • Natsumi Hayakawa
  • Hiroyuki Kato
  • Tsutomu Araki
Research Paper


We investigated the immunohistochemical alterations of the transcription nuclear factor kappa-B (NF-κB) and transcription factor p53 in the hippocampus after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the alterations of NF-κB, p53 and neuronal nuclei in the hippocampus after ischemia. Severe neuronal damage was observed in the hippocampal CA1 neurons 5 and 14 days after ischemia. In the present study, the increase of NF-κB immunoreactivity in glial cells and p53 immunoreactivity in neurons preceded neuronal damage in the hippocampal CA1 sector after ischemia. Thereafter, NF-κB immunoreactivity was induced highly in reactive astrocytes and microglia of the hippocampal CA1 sector where severe neuronal damage was observed. Our immunohistochemical study showed that pitavastatin prevented the alterations of NF-κB and p53 in the hippocampal CA1 sector 5 days after transient ischemia. Furthermore, our results with neuronal nuclei immunostaining indicate that pitavastatin dose-dependently prevented the neuronal cell death in the hippocampal CA1 sector 5 days after transient cerebral ischemia. These results suggest that the up-regulations of NF-κB in glia and p53 in neurons can cause neuronal cell death after ischemia. Our findings also support the hypothesis that NF-κB- and/or p53-mediated neuronal cell death is prevented through decreasing oxidative stress by pitavastatin. Thus, NF-κB and p53 may provide an attractive target for the development of novel therapeutic approaches for brain stroke.


Immunohistochemistry NF-κB p53 Neuronal nuclei Pitavastatin Gerbil 



The authors appreciatively acknowledge Kowa Company, Ltd., Tokyo, Japan, for providing pitavastatin, and helpful advice. This study was supported in part by the Grant-in-Aid for Scientific Research (12877163, 13671095 and 13670627) from the Ministry of Science and Education in Japan.


  1. Aoki T, Nishimura H, Nakagawa S, Kojima J, Suzuki H, Tamaki T, Wada Y, Yokoo N, Sato F, Kimata H, Kitahara M, Toyoda K, Sakashita M, Saito Y (1997) Pharmacological profile of a novel synthetic inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Arzneimittelforschung 47:904–909PubMedGoogle Scholar
  2. Araki T, Kato H, Kogure K (1989) Selective neuronal vulnerability following transient cerebral ischemia in gerbils: Distribution and time course. Acta Neurol Scand 80:548–533PubMedCrossRefGoogle Scholar
  3. Banasiak KJ, Haddad GG (1998) Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res 797:295–304PubMedCrossRefGoogle Scholar
  4. Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park D, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Nuerosci 22:8466–8475Google Scholar
  5. Buttini M, Sauter A, Boddeke HW (1994) Induction of interleukin-1β mRNA after focal cerebral ischemia in the rat. Mol Brain Res 23:126–134PubMedCrossRefGoogle Scholar
  6. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545PubMedCrossRefGoogle Scholar
  7. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14PubMedCrossRefGoogle Scholar
  8. Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891PubMedGoogle Scholar
  9. Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J (2003) Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 23:8586–8595PubMedGoogle Scholar
  10. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885PubMedCrossRefGoogle Scholar
  11. Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6:341–360PubMedGoogle Scholar
  12. Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israel A, Memet S (2003) Forebrain-specific neuronal inhibition of nuclear factor-κB activity leads to loss of neuroprotection. J Neurosci 23:9403–9408PubMedGoogle Scholar
  13. Fujimoto H, Kojima J, Yamada Y, Kanda H, Kimata H (1999) Studies on the metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase (4): interspecies variation in laboratory animals and humans. Xenobiot Metab Dispos 14:79–91Google Scholar
  14. Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappa B in the rat brain after transient focal ischemia. Mol Brain Res 65:61–69PubMedCrossRefGoogle Scholar
  15. Guo Q, Robinson N, Mattson MP (1998) Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J Biol Chem 273:12341–12351PubMedCrossRefGoogle Scholar
  16. Halterman MW, Miller CC, Federoff HJ (1999) Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19:6818–6824PubMedGoogle Scholar
  17. Hayashi T, Hamakawa K, Nagotani S, Jin G, Li F, Deguchi K, Sehera Y, Zhang H, Nagano I, Shoji M, Abe K (2005) HMG CoA reductase inhibitors reduce ischemic brain injury of rats through decreasing oxidative stress on neurons. Brain Res 1037:52–58PubMedCrossRefGoogle Scholar
  18. Himeda T, Hayakawa N, Tounai H, Sakuma M, Kato H, Araki T (2005) Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Neuropsychopharmacology 30:2014–2025PubMedCrossRefGoogle Scholar
  19. Kajinami K, Koizumi J, Ueda K, Miyamoto S, Takegoshi T, Mabuchi H (2000) Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Am J Cardiol 85:178–183PubMedCrossRefGoogle Scholar
  20. Kato H, Kogure K, Araki T, Itoyama Y (1995) Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. Brain Res 694:85–93PubMedCrossRefGoogle Scholar
  21. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  22. Kojima J, Fujino H, Abe H, Yoshimura M, Kanda H, Kimata H (1999) Identification of metabolites of NK-104, an HMG-CoA reductase inhibitor, in rat, rabbit and dog bile. Biol Pharm Bull 22:142–150PubMedGoogle Scholar
  23. Kumagai R, Oki C, Muramatsu Y, Kurosaki R, Kato H, Araki T (2004) Pitavastatin, a 3-hydroxy-3-methylglutaryl-conenzyme A (HMG-CoA) reductase inhibitor, reduces hippocampal damage after transient cerebral ischemia in gerbils. J Neural Transm 111:1103–1120PubMedCrossRefGoogle Scholar
  24. Kurosaki R, Muramatsu Y, Michimata M, Matsubara M, Kato H, Imai Y, Itoyama Y, Araki T (2002) Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol Res 24:655–662PubMedCrossRefGoogle Scholar
  25. Makarov SS (2000) NF-κB activity as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 6:441–448PubMedCrossRefGoogle Scholar
  26. Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254PubMedCrossRefGoogle Scholar
  27. Mattson MP (2005) NF-κB in the survival and plasticity of neurons. Neurochem Res 30:883–893PubMedCrossRefGoogle Scholar
  28. McGahan L, Hakim AM, Robertson GS (1998) Hippocampal Myc and p53 expression following transient global ischemia. Mol Brain Res 56:133–145PubMedCrossRefGoogle Scholar
  29. Morris EJ, Keramaris E, Rideout HJ, Slack RS, Dyson NJ, Stefanis L, Park DS (2001) Cyclin-dependent kinases and p53 pathways are activated independently and mediate Bax activation in neurons after DNA damage. J Neurosci 21:5017–5026PubMedGoogle Scholar
  30. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16:1337–1345PubMedGoogle Scholar
  31. Morrison RS, Kinoshita Y (2000) The role of p53 in neuronal cell death. Cell Death Differ 7:868–879PubMedCrossRefGoogle Scholar
  32. Moynagh PN, Williams DC, O’Neill LA (1993) Interleukin-1 activates transcription factor NF kappa B in glial cells. Biochem J 294:343–347PubMedGoogle Scholar
  33. Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia 42:307–313PubMedCrossRefGoogle Scholar
  34. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011PubMedGoogle Scholar
  35. Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J (2004) Nuclear factor-kB contributes to infarction after permanent focal ischemia. Stroke 35:987–991PubMedCrossRefGoogle Scholar
  36. Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647PubMedCrossRefGoogle Scholar
  37. Portera-Gailliau C, Henderson JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15:3775–3787Google Scholar
  38. Rosenson RS (2000) Biological basis for statin therapy in stroke prevention. Curr Opin Neurol 13:57–62PubMedCrossRefGoogle Scholar
  39. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636PubMedCrossRefGoogle Scholar
  40. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559PubMedCrossRefGoogle Scholar
  41. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258PubMedGoogle Scholar
  42. Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133:225–230PubMedCrossRefGoogle Scholar
  43. Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S, Clemens J (2000) Transcription factor nuclear factor-κB is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab 20:592–603PubMedCrossRefGoogle Scholar
  44. Urabe T, Yamasaki Y, Hattori N, Yoshikawa M, Uchida K, Mizuno Y (2000) Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain. Neuroscience 100:241–250PubMedCrossRefGoogle Scholar
  45. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765PubMedGoogle Scholar
  46. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373PubMedGoogle Scholar
  47. Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424PubMedGoogle Scholar
  48. Yu Z, Zhou D, Bruce-Keller AJ, Kindy MS, Mattson MP (1999) Lack of the p50 subunit of nuclear factor-kB increase the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 19:8856–8865PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hiroko Tounai
    • 1
  • Natsumi Hayakawa
    • 1
  • Hiroyuki Kato
    • 2
  • Tsutomu Araki
    • 1
  1. 1.Department of Drug Metabolism and TherapeuticsGraduate School and Faculty of Pharmaceutical Sciences, The University of TokushimaTokushimaJapan
  2. 2.Department of NeurologyOrganized Center of Clinical Medicine, International University of Health and WelfareTochigiJapan

Personalised recommendations