Skip to main content

Advertisement

Log in

Immunohistochemical Study on Distribution of NF-κB and p53 in Gerbil Hippocampus after Transient Cerebral Ischemia: Effect of Pitavastatin

  • Research Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstructs

We investigated the immunohistochemical alterations of the transcription nuclear factor kappa-B (NF-κB) and transcription factor p53 in the hippocampus after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin against the alterations of NF-κB, p53 and neuronal nuclei in the hippocampus after ischemia. Severe neuronal damage was observed in the hippocampal CA1 neurons 5 and 14 days after ischemia. In the present study, the increase of NF-κB immunoreactivity in glial cells and p53 immunoreactivity in neurons preceded neuronal damage in the hippocampal CA1 sector after ischemia. Thereafter, NF-κB immunoreactivity was induced highly in reactive astrocytes and microglia of the hippocampal CA1 sector where severe neuronal damage was observed. Our immunohistochemical study showed that pitavastatin prevented the alterations of NF-κB and p53 in the hippocampal CA1 sector 5 days after transient ischemia. Furthermore, our results with neuronal nuclei immunostaining indicate that pitavastatin dose-dependently prevented the neuronal cell death in the hippocampal CA1 sector 5 days after transient cerebral ischemia. These results suggest that the up-regulations of NF-κB in glia and p53 in neurons can cause neuronal cell death after ischemia. Our findings also support the hypothesis that NF-κB- and/or p53-mediated neuronal cell death is prevented through decreasing oxidative stress by pitavastatin. Thus, NF-κB and p53 may provide an attractive target for the development of novel therapeutic approaches for brain stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoki T, Nishimura H, Nakagawa S, Kojima J, Suzuki H, Tamaki T, Wada Y, Yokoo N, Sato F, Kimata H, Kitahara M, Toyoda K, Sakashita M, Saito Y (1997) Pharmacological profile of a novel synthetic inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Arzneimittelforschung 47:904–909

    PubMed  CAS  Google Scholar 

  • Araki T, Kato H, Kogure K (1989) Selective neuronal vulnerability following transient cerebral ischemia in gerbils: Distribution and time course. Acta Neurol Scand 80:548–533

    Article  PubMed  CAS  Google Scholar 

  • Banasiak KJ, Haddad GG (1998) Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res 797:295–304

    Article  PubMed  CAS  Google Scholar 

  • Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park D, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Nuerosci 22:8466–8475

    CAS  Google Scholar 

  • Buttini M, Sauter A, Boddeke HW (1994) Induction of interleukin-1β mRNA after focal cerebral ischemia in the rat. Mol Brain Res 23:126–134

    Article  PubMed  CAS  Google Scholar 

  • Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545

    Article  PubMed  CAS  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  PubMed  CAS  Google Scholar 

  • Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891

    PubMed  CAS  Google Scholar 

  • Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J (2003) Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 23:8586–8595

    PubMed  CAS  Google Scholar 

  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6:341–360

    PubMed  CAS  Google Scholar 

  • Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israel A, Memet S (2003) Forebrain-specific neuronal inhibition of nuclear factor-κB activity leads to loss of neuroprotection. J Neurosci 23:9403–9408

    PubMed  CAS  Google Scholar 

  • Fujimoto H, Kojima J, Yamada Y, Kanda H, Kimata H (1999) Studies on the metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase (4): interspecies variation in laboratory animals and humans. Xenobiot Metab Dispos 14:79–91

    Google Scholar 

  • Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappa B in the rat brain after transient focal ischemia. Mol Brain Res 65:61–69

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Robinson N, Mattson MP (1998) Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J Biol Chem 273:12341–12351

    Article  PubMed  CAS  Google Scholar 

  • Halterman MW, Miller CC, Federoff HJ (1999) Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19:6818–6824

    PubMed  CAS  Google Scholar 

  • Hayashi T, Hamakawa K, Nagotani S, Jin G, Li F, Deguchi K, Sehera Y, Zhang H, Nagano I, Shoji M, Abe K (2005) HMG CoA reductase inhibitors reduce ischemic brain injury of rats through decreasing oxidative stress on neurons. Brain Res 1037:52–58

    Article  PubMed  CAS  Google Scholar 

  • Himeda T, Hayakawa N, Tounai H, Sakuma M, Kato H, Araki T (2005) Alterations of interneurons of the gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Neuropsychopharmacology 30:2014–2025

    Article  PubMed  CAS  Google Scholar 

  • Kajinami K, Koizumi J, Ueda K, Miyamoto S, Takegoshi T, Mabuchi H (2000) Effects of NK-104, a new hydroxymethylglutaryl-coenzyme reductase inhibitor, on low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia. Am J Cardiol 85:178–183

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Kogure K, Araki T, Itoyama Y (1995) Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. Brain Res 694:85–93

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kojima J, Fujino H, Abe H, Yoshimura M, Kanda H, Kimata H (1999) Identification of metabolites of NK-104, an HMG-CoA reductase inhibitor, in rat, rabbit and dog bile. Biol Pharm Bull 22:142–150

    PubMed  CAS  Google Scholar 

  • Kumagai R, Oki C, Muramatsu Y, Kurosaki R, Kato H, Araki T (2004) Pitavastatin, a 3-hydroxy-3-methylglutaryl-conenzyme A (HMG-CoA) reductase inhibitor, reduces hippocampal damage after transient cerebral ischemia in gerbils. J Neural Transm 111:1103–1120

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki R, Muramatsu Y, Michimata M, Matsubara M, Kato H, Imai Y, Itoyama Y, Araki T (2002) Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol Res 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Makarov SS (2000) NF-κB activity as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 6:441–448

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2005) NF-κB in the survival and plasticity of neurons. Neurochem Res 30:883–893

    Article  PubMed  CAS  Google Scholar 

  • McGahan L, Hakim AM, Robertson GS (1998) Hippocampal Myc and p53 expression following transient global ischemia. Mol Brain Res 56:133–145

    Article  PubMed  CAS  Google Scholar 

  • Morris EJ, Keramaris E, Rideout HJ, Slack RS, Dyson NJ, Stefanis L, Park DS (2001) Cyclin-dependent kinases and p53 pathways are activated independently and mediate Bax activation in neurons after DNA damage. J Neurosci 21:5017–5026

    PubMed  CAS  Google Scholar 

  • Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16:1337–1345

    PubMed  CAS  Google Scholar 

  • Morrison RS, Kinoshita Y (2000) The role of p53 in neuronal cell death. Cell Death Differ 7:868–879

    Article  PubMed  CAS  Google Scholar 

  • Moynagh PN, Williams DC, O’Neill LA (1993) Interleukin-1 activates transcription factor NF kappa B in glial cells. Biochem J 294:343–347

    PubMed  CAS  Google Scholar 

  • Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia 42:307–313

    Article  PubMed  Google Scholar 

  • Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    PubMed  CAS  Google Scholar 

  • Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J (2004) Nuclear factor-kB contributes to infarction after permanent focal ischemia. Stroke 35:987–991

    Article  PubMed  Google Scholar 

  • Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Article  PubMed  CAS  Google Scholar 

  • Portera-Gailliau C, Henderson JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15:3775–3787

    Google Scholar 

  • Rosenson RS (2000) Biological basis for statin therapy in stroke prevention. Curr Opin Neurol 13:57–62

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    Article  PubMed  CAS  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  • Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133:225–230

    Article  PubMed  CAS  Google Scholar 

  • Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S, Clemens J (2000) Transcription factor nuclear factor-κB is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab 20:592–603

    Article  PubMed  CAS  Google Scholar 

  • Urabe T, Yamasaki Y, Hattori N, Yoshikawa M, Uchida K, Mizuno Y (2000) Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain. Neuroscience 100:241–250

    Article  PubMed  CAS  Google Scholar 

  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765

    PubMed  CAS  Google Scholar 

  • Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424

    PubMed  CAS  Google Scholar 

  • Yu Z, Zhou D, Bruce-Keller AJ, Kindy MS, Mattson MP (1999) Lack of the p50 subunit of nuclear factor-kB increase the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 19:8856–8865

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciatively acknowledge Kowa Company, Ltd., Tokyo, Japan, for providing pitavastatin, and helpful advice. This study was supported in part by the Grant-in-Aid for Scientific Research (12877163, 13671095 and 13670627) from the Ministry of Science and Education in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Araki.

Additional information

Hiroko Tounai and Natsumi Hayakawa equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tounai, H., Hayakawa, N., Kato, H. et al. Immunohistochemical Study on Distribution of NF-κB and p53 in Gerbil Hippocampus after Transient Cerebral Ischemia: Effect of Pitavastatin. Metab Brain Dis 22, 89–104 (2007). https://doi.org/10.1007/s11011-006-9040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9040-3

Keywords

Navigation