Advertisement

Metabolic Brain Disease

, Volume 21, Issue 4, pp 273–278 | Cite as

Homocysteine increases neuronal damage in hippocampal slices receiving oxygen and glucose deprivation

  • Bárbara Tagliari
  • Lauren L. Zamin
  • Christianne G. Salbego
  • Carlos Alexandre Netto
  • Angela T. S. Wyse
Original Paper

Abstract

Homocystinuria is an inherited metabolic disorder caused by severe deficiency of cystationine β-synthase activity, resulting in the tissue accumulation of homocysteine (Hcy). Affected patients usually present many signs and symptoms such as seizures, mental retardation, atherosclerosis and stroke. The aim of this study is to evaluate in vivo and in vitro effects of Hcy using hippocampal slices from Wistar rats exposed to oxygen and glucose deprivation (OGD), followed by reoxygenation, an in vitro model of hypoxic–ischemic events. Neural cell injury was quantified by the measurement of lactate dehydrogenase (LDH) released from damaged cells into the extracellular fluid. The results showed that both in vivo and in vitro Hcy increased the LDH released to de incubation medium, suggesting an increase of tissue damage caused by OGD. This fact can be related with the high incidence of stroke in homocystinuric patients.

Keywords

Homocysteine Homocystinuria Metabolic disease Cerebral ischemia Cell damage 

Notes

Acknowledgments

This work was supported in part by grants from CNPq—Brazil, FAPERGS, and Programa de Núcleos de excelência—Financiadora de Estudos e Projetos (PRONEX—Brazil).

References

  1. Almli LM, Hamrick SE, Koshy AA, Tauber MG, Ferriero DM (2001) Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. Dev Brain Res 132:121–129CrossRefGoogle Scholar
  2. Cárdenas A, Moro MA, Hurtado O, Leza JC, Lorenzo AP, Castrillo OG, Bodelón OG, Boscá I (2000) Lizasoain, implication of glutamate in the expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. J Neurochem 74:2041–2048PubMedCrossRefGoogle Scholar
  3. Cimarosti H, Rodnight R, Tavares A, Paiva R, Valentim L, Rocha E, Salbego C (2001) An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett 315:33–36PubMedCrossRefGoogle Scholar
  4. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficieny and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80:101–110PubMedCrossRefGoogle Scholar
  5. Endres M, Ahmadi M, Kruman I, Biniszkiewicz D, Meisel A, Gertz K (2005) Folate deficiency increases postischemic brain injury. Stroke 36:321–325PubMedCrossRefGoogle Scholar
  6. Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress and cerebral vascular disfunction. Stroke 35:354–347CrossRefGoogle Scholar
  7. Fontella FU, Cimarosti H, Crema LM, Thomazi AP, Leite MC, Salbego C, Gonçalves CAS, Wofchuk S, Dalmaz C, Netto CA (2005) Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bul 65:443–450CrossRefGoogle Scholar
  8. Kraus JP (1998) Biochemistry and molecular genetics of cystathionine β-synthase deficiency. Eur J Pediatr 157:S50–S53PubMedCrossRefGoogle Scholar
  9. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90PubMedCrossRefGoogle Scholar
  10. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1–33Google Scholar
  11. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146PubMedCrossRefGoogle Scholar
  12. Mudd SH, Levy HL, Skovby F (2001) Disorders of transulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 2. McGraw-Hill, New York, pp 1279–1327Google Scholar
  13. Perna AF, Ingrosso D, De Santo NG (2003) Homocysteine and oxidative stress. Amino Acids 25:409–417PubMedCrossRefGoogle Scholar
  14. Schwammenthal Y, Tanne D (2004) Homocysteine, B-vitamin supplementation, and stroke prevention: From observational to interventional trials. Lancet Neurol 3:493–495PubMedCrossRefGoogle Scholar
  15. Siqueira IR, Cimarosti H, Fochesatto C, Salbego C, Netto CA (2004) Age-related susceptibility to oxygen and glucose deprivation damage in rat hippocampal slices. Brain Res 1025:226–230PubMedCrossRefGoogle Scholar
  16. Streck EL, Bavaresco CS, Netto CA, Wyse ATS (2004) Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 153:377–381PubMedCrossRefGoogle Scholar
  17. Streck EL, Delwing D, Tagliari B, Matté C, Wannmacher CM, Wajner M, Wyse ATS (2003a) Brain energy metabolism is compromised by the metabolites accumulating in homocistinúria. Neurochem Int 43:597–602PubMedCrossRefGoogle Scholar
  18. Streck EL, Vieira PS, Wannmacher CMD, Dutra-Filho CS, Wajner M, Wyse ATS (2003b) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154PubMedCrossRefGoogle Scholar
  19. Streck EL, Matté C, Vieira PS, Rombaldi F, Wannmacher CMD, Dutra-Filho CS, Wajner M, Wyse ATS (2002) Reduction of Na+,K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598Google Scholar
  20. Taylor CP, Burke SP, Weber ML (1995) Hippocampal slices: Glutamate overflow and cellular damage from ischemia are reduced by sodium channel blockade. J Neurosci Methods 59:121–128PubMedCrossRefGoogle Scholar
  21. Thambyrajah J, Townend JN (2000) Homocysteine and atherothrombosis—mechanisms for injury. Eur Heart J 21:967–974PubMedCrossRefGoogle Scholar
  22. Van Beynum IM, Smeitink JAM, Den Heijer M, te Poele Pothoff MTWB, Blom HJ (1999) Hyperhomocysteinemia, a risk factor for ischemic stroke in children. Circulation 99:2070–2072PubMedGoogle Scholar
  23. Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231PubMedCrossRefGoogle Scholar
  24. White BC, Sullivan JM, De Gracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33PubMedCrossRefGoogle Scholar
  25. Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25:969–973Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Bárbara Tagliari
    • 1
  • Lauren L. Zamin
    • 1
  • Christianne G. Salbego
    • 1
  • Carlos Alexandre Netto
    • 1
  • Angela T. S. Wyse
    • 1
  1. 1.Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do Sul, Rua Ramiro BarcelosPorto AlegreBrazil

Personalised recommendations