Metabolic Brain Disease

, Volume 21, Issue 2–3, pp 242–254 | Cite as

Tissue kallikrein and kinin receptor expression in an angiogenic co-culture neuroblastoma model

  • S. Naidoo
  • D. M. Raidoo
Original Paper


The sprouting of new blood vessels from pre-existing vasculature (angiogenesis) is essential for tumour survival, influenced by tumour cell-endothelial cell interactions and is tightly regulated by biochemical cues including the kallikrein-kinin system (KKS). We examined the structural interaction between neuroblastomas and endothelial cells (HUVECs) in 2-D and 3-D (matrigel) in vitro, co-culture models by light microscopy, and performed in situ mono- and co-labelling of various KKS proteins. Neuroblastomas formed footplate-like multiple contacts on angiogenic HUVECs without disrupting differentiation of HUVECs into cord-like structures. Tissue kallikrein and the kinin B1R and B2R receptors were demonstrated on interacting neuroblastomas and HUVECs to varying degrees, as well as at actual heterogeneous contact zones in both 2-D and 3-D models. This KKS immuno-reactivity was generally confined to peri-nuclear regions on HUVECs but concentrated on cell extensions on neuroblastomas. The KKS, known to enhance DNA synthesis and process pro-angiogenic precursors of both tumour cells and the extra-cellular matrix, may, by its multi-functional activities at sites of tumour-blood vessel interactions, regulate aspects of both angiogenesis and tumourigenesis.


B1R B2R Angiogenesis Tumourigenesis Matrigel Kinin 



The authors thank the National Research Foundation (NRF) of South Africa for financial support, as well as the Research Office, University of KwaZulu Natal.


  1. Bhoola KD, Elson CJ, Dieppe PA (1992a) Kinins-key mediators ininflammatory arthritis. Br J Rheum 31:509–518Google Scholar
  2. Bhoola KD, Figueroa CD, Worthy K (1992b) Bioregulation of Kinins: Kallikreins, kininogens and kininases. Pharmacol Rev 44:1–80PubMedGoogle Scholar
  3. Bischoff J (1997) Cell adhesion and angiogenesis. J Clin Invest 99:373–376PubMedCrossRefGoogle Scholar
  4. Borgono C, Micheal I, Diamandis E (2004) Human tissue kallikreins: Physiologic roles and applications in cancer. Mol Cancer Res 2:257–280PubMedGoogle Scholar
  5. Chen L-M, Song Q, Chao L, Chao J (1995) Cellular localisation oftissue kallikrein and kallistatin mRNAs in human kidney. Kid Int 48:690–697Google Scholar
  6. Dedio J, Wiemer G, Rutten H, Dendorfer A, Scholkens B, Muller-Esterl W, Wohlfart P (2001) Tissue kallikrein KLK1 is expressed de novo inendothelial cells and mediates relaxation of human umbilical veins. J Biol Chem 382:1483–1490CrossRefGoogle Scholar
  7. Desrivieres S, Lu H, Peyri N, Soria C, Legrand Y, Menashi S (1993) Activation of the 92 kDa type IV collagenase by tissue kallikrein. J Cell Physiol 157:587–593PubMedCrossRefGoogle Scholar
  8. Diamandis EP, Yousef GM (2002) Human tissue kallikreins: A family of new cancer biomarkers. Clin Chem 48:1198–1205PubMedGoogle Scholar
  9. Diamandis EP, Yousef GM, Luo L-Y, Magklara A, Obiezu CV (2000) The new human kallikrein gene family: Implications in carcinogenesis. Trends Endocrinol Metab 11:54–60PubMedCrossRefGoogle Scholar
  10. Emanueli C, Minasi A, Zacheo A, Chao J, Chao L, Salis M, Straino S, Tozzi M, Smith R, Gaspa L, Bianchini G, Stillo F, Capogrossi M, Madeddu P (2001a) Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 103:125–132PubMedGoogle Scholar
  11. Emanueli C, Salis M, Stacca T, Pintus G, Kirchmair R, Isner J, Pinna A, Gaspa L, Regoli D, Cayla C, Pesquero J, Bader M, Madeddu P (2001b) Targeting kinin B1 receptor for therapeutic neovascularization. Circulation 105:360–366CrossRefGoogle Scholar
  12. Emanueli C, Schratzberger P, Kirchmair R, Madeddu P (2003) Paracrine control of vascularization and neurogenesis by neurotrophins. Br J Pharmacol 140:614–619PubMedCrossRefGoogle Scholar
  13. Ferrara N (1996) Vascular endothelium growth factor. Eur J Cancer 32A:2413–2422PubMedCrossRefGoogle Scholar
  14. Ferrara N, Alitalo K (1999) Clinical applications for angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364PubMedCrossRefGoogle Scholar
  15. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, Kreutzer DL (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: In situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 157:2329–2333PubMedCrossRefGoogle Scholar
  16. Folberg R, Hendrix MJC, Maniotis AJ (2000) Vasculogenic mimicryand tumor angiogenesis. Am J Pathol 156:361–381PubMedGoogle Scholar
  17. Folkman J (1971) Tumour angiogenesis: Therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  18. Folkman J (1972) Anti-angiogenesis: New concept for therapy of solid tumors. Ann Surg 175:409–416PubMedCrossRefGoogle Scholar
  19. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18PubMedGoogle Scholar
  20. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556PubMedCrossRefGoogle Scholar
  21. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934PubMedGoogle Scholar
  22. Gargett CE, Bucak K, Rogers PAW (2000) Isolation, characterization and long-term culture of human myometrial microvascular endothelial cells. Hum Reprod 15:293–301PubMedCrossRefGoogle Scholar
  23. Graf K, Grafe M, Auch-Schwelk W, Baumgarten CR, Scheffer H, Hildebrandt AEF (1994) Tissue kallikrein activity and kinin release in human endothelial cells. Eur J Clin Chem Clin Biochem 32:495–500PubMedGoogle Scholar
  24. Griffioen AW, Barendz-Janson AF, Mayo KH, Hillen HFP (1998) Angiogenesis, a target for tumor therapy. J Lab Clin Med 132:363–368PubMedCrossRefGoogle Scholar
  25. Ishihara K, Hayash I, Yamashina SMM (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:4Google Scholar
  26. Jackson C, Nguyen M, Arkell J, Sambrook P (2001) Selective matrixmetalloproteinase (MMP) inhibition in rheumatoid arthritis-targetting gelatinase A activation. Inflam Res 50:183–186CrossRefGoogle Scholar
  27. Kataoka H, Itoh H, Koono M (2002) Emerging multifunctional aspects of cellular serine proteinase inhibitors in tumor progression and tissue regeneration. Pathol Int 52:89–102PubMedCrossRefGoogle Scholar
  28. Kisker O, Onizuka S, Becker C, Fannon M, Flynn E, D’Amato R, Zetter B, Folkman J, Ray R, Swamy N, Pirie-Shephard S (2003) Vitamin D binding protein-macrophage activating factor (DBF-maf) inhibits angiogenesis and tumor growth. Neoplasia 5:32–40PubMedGoogle Scholar
  29. Koch A (1998) Angiogenesis: Implications for rheumatoid arthritis. Arthritis Rheum 41:951–962PubMedCrossRefGoogle Scholar
  30. Mason D, Sammons R (1978) Alkaline phosphatase and peroxidase for double immunoenzymatic labbeling of cellular constituents. J Clin Pathol 31:454–460PubMedGoogle Scholar
  31. Matsumura Y, Kimura M, Yamamoto T, Konno T, Maeda H (1988) Involvement of the kinin generating cascade in enhanced vascular permeability intumour tissue. Jpn J Cancer Res 79:1327–1334PubMedGoogle Scholar
  32. Naidoo S, Raidoo D, Mahabeer R, McLean M (2004) Tumour metabolites regulate tissue kallikrein in human umbilical vein endothelial cells. Biochim Biophys Acta 1691:117–127PubMedCrossRefGoogle Scholar
  33. Naidoo S, Ramsaroop R, Bhoola R, Bhoola K (1997) The evaluation of tissue kallikrein in Helicobacter pylori-associated gastric ulcer disease. Immunopharm 36:263–269CrossRefGoogle Scholar
  34. Naidoo S, Ramsaroop R, Bhoola R, Bhoola K (1999) Correlation ofkinin-generating activity with Helicobacter pylori-associated gastric infection. Immunopharm 43:225–233CrossRefGoogle Scholar
  35. Naidoo S, Ramsaroop R, Naidoo Y, Bhoola KD (1996) The status of B2 receptors in acute renal transplant rejection. Immunopharm 33:157–160CrossRefGoogle Scholar
  36. Naidoo V, Naidoo S, Mahabeer R, Raidoo D (2005) Localization of the endothelin system in human diffuse astrocytomas. Cancer 104:1049–1057PubMedCrossRefGoogle Scholar
  37. Nolly H, Nolly A (1988) Release of endothelial-derived kallikrein, kininogen and kinins. Biol Res 31:169–174Google Scholar
  38. Plendl J, Snyman C, Naidoo S, Sawant S, Mahabeer R, Bhoola KD (2000) Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells. J Biol Chem 281:1103–1115Google Scholar
  39. Raidoo D, Sawant S, Mahabeer RKDB (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharm 43:255–263CrossRefGoogle Scholar
  40. Raidoo DM, Ramchurren N, Naidoo Y, Naidoo S, Müller-Esterl W, Bhoola KD (1996a) Visualisation of bradykinin B2 receptors on human brain neurons. Immunopharm 33:104–107CrossRefGoogle Scholar
  41. Raidoo DM, Ramsaroop R, Naidoo S, Bhoola KD (1996b) Regional distribution of tissue kallikrein in the human brain. Immunopharm 32:39–47CrossRefGoogle Scholar
  42. Raidoo DM, Ramsaroop R, Naidoo S, Bhoola KD (1997) Visualisation of tissue kallikrein and kinin receptors in human astrocytomas. Br J Pharmacol 122:107Google Scholar
  43. Rixon RH, Whitfield JF (1973) Kininogenases, kallikrein. Schattauer-Verlag. Stuttgart.Google Scholar
  44. Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Press. New YorkGoogle Scholar
  45. Seyedi N, Xu Z, Nasjletti A, Hintze T (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170PubMedGoogle Scholar
  46. Silvestre J-S, Bergaya S, Tamarat RMD, Boulanger C, Levy B (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B2 receptor pathway. Circ Res 89:678–683PubMedGoogle Scholar
  47. Tscheche H, Michealis J, Kohnert U, Fedrowitz J, Oberhoff R (1989) Tissue kallikrein effectively activates latent matrix degrading metalloenzymes. Adv Exp Med Biol 247A:545–548Google Scholar
  48. Wu J, Akaide T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclo-oxygenase inhibitor, and a nitrogen oxide scavenger. Cancer Res 58:159–165PubMedGoogle Scholar
  49. Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Muller Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35PubMedCrossRefGoogle Scholar
  50. Yayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H (2003) Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. Biochim Biophys Acta 1593:231–238PubMedCrossRefGoogle Scholar
  51. Yousef G, Diamandis E (2001) The new human tissue kallikrein gene family: Structure, function and association to disease. Endocr Rev 22:184–202PubMedCrossRefGoogle Scholar
  52. Yu J, Rak J, Coomber B, Hicklin D, Kerbel R (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Therapeutics and Medicines Management, Nelson R Mandela School of MedicineUniversity of KwaZulu NatalDurbanSouth Africa
  2. 2.School of Medicine, Department of PsychiatryUniversity of South DakotaSioux FallsUSA

Personalised recommendations