Skip to main content

Advertisement

Log in

Tissue kallikrein and kinin receptor expression in an angiogenic co-culture neuroblastoma model

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The sprouting of new blood vessels from pre-existing vasculature (angiogenesis) is essential for tumour survival, influenced by tumour cell-endothelial cell interactions and is tightly regulated by biochemical cues including the kallikrein-kinin system (KKS). We examined the structural interaction between neuroblastomas and endothelial cells (HUVECs) in 2-D and 3-D (matrigel) in vitro, co-culture models by light microscopy, and performed in situ mono- and co-labelling of various KKS proteins. Neuroblastomas formed footplate-like multiple contacts on angiogenic HUVECs without disrupting differentiation of HUVECs into cord-like structures. Tissue kallikrein and the kinin B1R and B2R receptors were demonstrated on interacting neuroblastomas and HUVECs to varying degrees, as well as at actual heterogeneous contact zones in both 2-D and 3-D models. This KKS immuno-reactivity was generally confined to peri-nuclear regions on HUVECs but concentrated on cell extensions on neuroblastomas. The KKS, known to enhance DNA synthesis and process pro-angiogenic precursors of both tumour cells and the extra-cellular matrix, may, by its multi-functional activities at sites of tumour-blood vessel interactions, regulate aspects of both angiogenesis and tumourigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bhoola KD, Elson CJ, Dieppe PA (1992a) Kinins-key mediators ininflammatory arthritis. Br J Rheum 31:509–518

    CAS  Google Scholar 

  • Bhoola KD, Figueroa CD, Worthy K (1992b) Bioregulation of Kinins: Kallikreins, kininogens and kininases. Pharmacol Rev 44:1–80

    PubMed  CAS  Google Scholar 

  • Bischoff J (1997) Cell adhesion and angiogenesis. J Clin Invest 99:373–376

    Article  PubMed  CAS  Google Scholar 

  • Borgono C, Micheal I, Diamandis E (2004) Human tissue kallikreins: Physiologic roles and applications in cancer. Mol Cancer Res 2:257–280

    PubMed  CAS  Google Scholar 

  • Chen L-M, Song Q, Chao L, Chao J (1995) Cellular localisation oftissue kallikrein and kallistatin mRNAs in human kidney. Kid Int 48:690–697

    CAS  Google Scholar 

  • Dedio J, Wiemer G, Rutten H, Dendorfer A, Scholkens B, Muller-Esterl W, Wohlfart P (2001) Tissue kallikrein KLK1 is expressed de novo inendothelial cells and mediates relaxation of human umbilical veins. J Biol Chem 382:1483–1490

    Article  CAS  Google Scholar 

  • Desrivieres S, Lu H, Peyri N, Soria C, Legrand Y, Menashi S (1993) Activation of the 92 kDa type IV collagenase by tissue kallikrein. J Cell Physiol 157:587–593

    Article  PubMed  CAS  Google Scholar 

  • Diamandis EP, Yousef GM (2002) Human tissue kallikreins: A family of new cancer biomarkers. Clin Chem 48:1198–1205

    PubMed  CAS  Google Scholar 

  • Diamandis EP, Yousef GM, Luo L-Y, Magklara A, Obiezu CV (2000) The new human kallikrein gene family: Implications in carcinogenesis. Trends Endocrinol Metab 11:54–60

    Article  PubMed  CAS  Google Scholar 

  • Emanueli C, Minasi A, Zacheo A, Chao J, Chao L, Salis M, Straino S, Tozzi M, Smith R, Gaspa L, Bianchini G, Stillo F, Capogrossi M, Madeddu P (2001a) Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 103:125–132

    PubMed  CAS  Google Scholar 

  • Emanueli C, Salis M, Stacca T, Pintus G, Kirchmair R, Isner J, Pinna A, Gaspa L, Regoli D, Cayla C, Pesquero J, Bader M, Madeddu P (2001b) Targeting kinin B1 receptor for therapeutic neovascularization. Circulation 105:360–366

    Article  Google Scholar 

  • Emanueli C, Schratzberger P, Kirchmair R, Madeddu P (2003) Paracrine control of vascularization and neurogenesis by neurotrophins. Br J Pharmacol 140:614–619

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (1996) Vascular endothelium growth factor. Eur J Cancer 32A:2413–2422

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Alitalo K (1999) Clinical applications for angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, Kreutzer DL (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: In situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 157:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Folberg R, Hendrix MJC, Maniotis AJ (2000) Vasculogenic mimicryand tumor angiogenesis. Am J Pathol 156:361–381

    PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumour angiogenesis: Therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1972) Anti-angiogenesis: New concept for therapy of solid tumors. Ann Surg 175:409–416

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    PubMed  CAS  Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  • Gargett CE, Bucak K, Rogers PAW (2000) Isolation, characterization and long-term culture of human myometrial microvascular endothelial cells. Hum Reprod 15:293–301

    Article  PubMed  CAS  Google Scholar 

  • Graf K, Grafe M, Auch-Schwelk W, Baumgarten CR, Scheffer H, Hildebrandt AEF (1994) Tissue kallikrein activity and kinin release in human endothelial cells. Eur J Clin Chem Clin Biochem 32:495–500

    PubMed  CAS  Google Scholar 

  • Griffioen AW, Barendz-Janson AF, Mayo KH, Hillen HFP (1998) Angiogenesis, a target for tumor therapy. J Lab Clin Med 132:363–368

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Hayash I, Yamashina SMM (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:4

    Google Scholar 

  • Jackson C, Nguyen M, Arkell J, Sambrook P (2001) Selective matrixmetalloproteinase (MMP) inhibition in rheumatoid arthritis-targetting gelatinase A activation. Inflam Res 50:183–186

    Article  CAS  Google Scholar 

  • Kataoka H, Itoh H, Koono M (2002) Emerging multifunctional aspects of cellular serine proteinase inhibitors in tumor progression and tissue regeneration. Pathol Int 52:89–102

    Article  PubMed  CAS  Google Scholar 

  • Kisker O, Onizuka S, Becker C, Fannon M, Flynn E, D’Amato R, Zetter B, Folkman J, Ray R, Swamy N, Pirie-Shephard S (2003) Vitamin D binding protein-macrophage activating factor (DBF-maf) inhibits angiogenesis and tumor growth. Neoplasia 5:32–40

    PubMed  CAS  Google Scholar 

  • Koch A (1998) Angiogenesis: Implications for rheumatoid arthritis. Arthritis Rheum 41:951–962

    Article  PubMed  CAS  Google Scholar 

  • Mason D, Sammons R (1978) Alkaline phosphatase and peroxidase for double immunoenzymatic labbeling of cellular constituents. J Clin Pathol 31:454–460

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Kimura M, Yamamoto T, Konno T, Maeda H (1988) Involvement of the kinin generating cascade in enhanced vascular permeability intumour tissue. Jpn J Cancer Res 79:1327–1334

    PubMed  CAS  Google Scholar 

  • Naidoo S, Raidoo D, Mahabeer R, McLean M (2004) Tumour metabolites regulate tissue kallikrein in human umbilical vein endothelial cells. Biochim Biophys Acta 1691:117–127

    Article  PubMed  CAS  Google Scholar 

  • Naidoo S, Ramsaroop R, Bhoola R, Bhoola K (1997) The evaluation of tissue kallikrein in Helicobacter pylori-associated gastric ulcer disease. Immunopharm 36:263–269

    Article  CAS  Google Scholar 

  • Naidoo S, Ramsaroop R, Bhoola R, Bhoola K (1999) Correlation ofkinin-generating activity with Helicobacter pylori-associated gastric infection. Immunopharm 43:225–233

    Article  CAS  Google Scholar 

  • Naidoo S, Ramsaroop R, Naidoo Y, Bhoola KD (1996) The status of B2 receptors in acute renal transplant rejection. Immunopharm 33:157–160

    Article  CAS  Google Scholar 

  • Naidoo V, Naidoo S, Mahabeer R, Raidoo D (2005) Localization of the endothelin system in human diffuse astrocytomas. Cancer 104:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Nolly H, Nolly A (1988) Release of endothelial-derived kallikrein, kininogen and kinins. Biol Res 31:169–174

    Google Scholar 

  • Plendl J, Snyman C, Naidoo S, Sawant S, Mahabeer R, Bhoola KD (2000) Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells. J Biol Chem 281:1103–1115

    Google Scholar 

  • Raidoo D, Sawant S, Mahabeer RKDB (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharm 43:255–263

    Article  CAS  Google Scholar 

  • Raidoo DM, Ramchurren N, Naidoo Y, Naidoo S, Müller-Esterl W, Bhoola KD (1996a) Visualisation of bradykinin B2 receptors on human brain neurons. Immunopharm 33:104–107

    Article  CAS  Google Scholar 

  • Raidoo DM, Ramsaroop R, Naidoo S, Bhoola KD (1996b) Regional distribution of tissue kallikrein in the human brain. Immunopharm 32:39–47

    Article  CAS  Google Scholar 

  • Raidoo DM, Ramsaroop R, Naidoo S, Bhoola KD (1997) Visualisation of tissue kallikrein and kinin receptors in human astrocytomas. Br J Pharmacol 122:107

    Google Scholar 

  • Rixon RH, Whitfield JF (1973) Kininogenases, kallikrein. Schattauer-Verlag. Stuttgart.

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Press. New York

    Google Scholar 

  • Seyedi N, Xu Z, Nasjletti A, Hintze T (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170

    PubMed  CAS  Google Scholar 

  • Silvestre J-S, Bergaya S, Tamarat RMD, Boulanger C, Levy B (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B2 receptor pathway. Circ Res 89:678–683

    PubMed  CAS  Google Scholar 

  • Tscheche H, Michealis J, Kohnert U, Fedrowitz J, Oberhoff R (1989) Tissue kallikrein effectively activates latent matrix degrading metalloenzymes. Adv Exp Med Biol 247A:545–548

    Google Scholar 

  • Wu J, Akaide T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclo-oxygenase inhibitor, and a nitrogen oxide scavenger. Cancer Res 58:159–165

    PubMed  CAS  Google Scholar 

  • Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Muller Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35

    Article  PubMed  CAS  Google Scholar 

  • Yayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H (2003) Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. Biochim Biophys Acta 1593:231–238

    Article  PubMed  CAS  Google Scholar 

  • Yousef G, Diamandis E (2001) The new human tissue kallikrein gene family: Structure, function and association to disease. Endocr Rev 22:184–202

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Rak J, Coomber B, Hicklin D, Kerbel R (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Research Foundation (NRF) of South Africa for financial support, as well as the Research Office, University of KwaZulu Natal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Naidoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidoo, S., Raidoo, D.M. Tissue kallikrein and kinin receptor expression in an angiogenic co-culture neuroblastoma model. Metab Brain Dis 21, 242–254 (2006). https://doi.org/10.1007/s11011-006-9008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9008-3

Keywords

Navigation