Metabolic Brain Disease

, Volume 20, Issue 4, pp 285–294 | Cite as

Protein Tyrosine Nitration in Hyperammonemia and Hepatic Encephalopathy

  • Dieter Häussinger
  • Boris Görg
  • Roland Reinehr
  • Freimut Schliess


Hepatic encephalopathy is seen as a clinical manifestation of a chronic low grade cerebral edema, which is thought to trigger disturbances of astrocyte function, glioneuronal communication, and finally HE symptoms. In cultured astrocytes, hypoosmotic swelling triggers a rapid oxidative stress response, which involves the action of NADPH oxidase isoenzymes, followed by tyrosine nitration of distinct astrocytic proteins. Oxidative stress and protein tyrosine nitration (PTN) are also observed in response to ammonia, inflammatory cytokines, such as TNF-ά or interferons, and benzodiazepines with affinity to the peripheral benzodiazepine receptor (PBR). NMDA receptor activation was identified as upstream event in protein tyrosine nitration (PTN). Cerebral PTN is also found in vivoafter administration of ammonia, benzodiazepines or lipopolysaccharide and in portocaval shunted rats. PTN predominantly affects astrocytes surrounding cerebral vessels with potential impact on blood-brain-barrier permeability. Among the tyrosine-nitrated proteins, glutamine synthetase, GAPDH, extracellular signal-regulated kinase and the PBR were identified. PTN of glutamine synthetase is associated with inactivation of the enzyme. Thus, factors known to trigger hepatic encephalopathy induce oxidative/nitrosative stress on astrocytes with protein modifications through PTN. The pathobiochemical relevance of astrocytic PTN for the development of HE symptoms remains to be established.


Oxidative stress nitric oxide liver astrocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender, A.S., and Norenberg, M.D. (1998). Effect of benzodiazepines and neurosteroids on ammonia-induced swelling in cultured astrocytes. J. Neurosci. Res. 54:673–680.PubMedCrossRefGoogle Scholar
  2. Bender, A.S., Rivera, I.V., and Norenberg, M.D. (1992). Tumor necrosis factor-α induces astrocyte swelling. Trans. Am. Soc. Neurochem. 23:113.Google Scholar
  3. Bender, A.S., Schousboe, A., Reichelt, W., and Norenberg, M.D. (1998). Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J. Neurosci. Res. 52:307–321.PubMedCrossRefGoogle Scholar
  4. Benz, B., Grima, G., and Do, K.Q. (2004). Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience 124:377–386.PubMedCrossRefGoogle Scholar
  5. Bezzi, P., Domercq, M., Vesce, S., and Volterra, A. (2001a). Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog. Brain Res. 132:255–265.Google Scholar
  6. Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001b). CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4:702–710.CrossRefGoogle Scholar
  7. Blei, A.T., Olafsson, S., Therrien, G., and Butterworth, R.F. (1994). Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444.PubMedCrossRefGoogle Scholar
  8. Buchczyk, D.P., Briviba, K., Hartl, F.U., and Sies, H. (2000). Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination. Biol. Chem. 381:121–126.PubMedCrossRefGoogle Scholar
  9. Busch, G.L., Wiesinger, H., Gulbins, E., Wagner, H.J., Hamprecht, B., and Lang, F. (1996). Effect of astroglial cell swelling on pH of acidic intracellular compartments. Biochim. Biophys. Acta 1285:212–218.PubMedGoogle Scholar
  10. Chepkova, A.N., Doreulee, N., Yanovsky, Y., Mukhopadhyay, D., Haas, H.L., Sergeeva, O.A. (2002). Long-lasting enhancement of corticostriatal neurotransmission by taurine. Eur. J. Neurosci. 16:1523–1530PubMedCrossRefGoogle Scholar
  11. Cordoba, J., Gottstein, J., and Blei, A.T. (1996). Glutamine, myo-inositol and organic brain osmolytes after portacaval anastomosis in the rat - implications for ammonia-induced brain edema. Hepatology 24:919–923.PubMedCrossRefGoogle Scholar
  12. Cordoba, J., Crespin, J., Gottstein, J., and Blei, A.T. (1999). Mild hypothermia modifies ammonia-induced brain edema in rats after portacaval anastomosis. Gastroenterology 116:686–693.PubMedCrossRefGoogle Scholar
  13. Desjardins, P., Rao, K.V., Michalak, A., Rose, C., and Butterworth, R.F. (1999). Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab. Brain Dis. 14:273–280.PubMedCrossRefGoogle Scholar
  14. Desjardins, P., and Butterworth, R.F. (2002). The “peripheral-type” benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem. Int. 41:109–114.PubMedCrossRefGoogle Scholar
  15. Dombro, R.S., Bender, A.S., and Norenberg, M.D. (2000). Association between cell swelling and glycogen content in cultured astrocytes. Int. J. Dev. Neurosci. 18:161–169.PubMedGoogle Scholar
  16. Fischer, R., Schliess, F., and Häussinger, D. (1997). Characterization of the hypo-osmolarity-induced Ca2+response in cultured rat astrocytes. GLIA 20:51–58.PubMedCrossRefGoogle Scholar
  17. Görg, B., Foster, N., Reinehr, R.M., Bidmon, H.J., Höngen, A., Häussinger, D., and Schliess, F. (2003). Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37:334–342.PubMedGoogle Scholar
  18. Hansson, E, and Rönnbäck, L. (1995). Astrocytes in glutamate neurotransmission. FASEB, J. 9:343–350.Google Scholar
  19. Haskew, R.E., Mongin, A.A., and Kimelberg, H.K. (2002). Peroxynitrite enhances astrocytic volume-sensitive excitatory amino acid release via a src tyrosine kinase-dependent mechanism. J. Neurochem. 82:903–912.PubMedCrossRefGoogle Scholar
  20. Häussinger, D. (1996). The role of cellular hydration in the regulation of cell function. Biochem. J. 321:697– 710.Google Scholar
  21. Häussinger, D., Kircheis, G., Fischer, R., Schliess, F., and vom Dahl, S. (2000). Hepatic encephalopathy in chronic liver desease: a clinical manifestation of astrocyte swelling and low grade cerebral edema. J. Hepatol. 32:1035–1038.PubMedGoogle Scholar
  22. Häussinger, D., Laubenberger, J., vom Dahl, S., Ernst, T., Bayer, S., Langer, M., Gerok, W., and Hennig, J. (1994). Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480.PubMedGoogle Scholar
  23. Häussinger, D., Kubitz, R., Reinehr, R., Bode, J.G., and Schliess, F. (2004). From experimental to clinical hepatology. Mol. Aspects Med. 25:221–360PubMedGoogle Scholar
  24. Hazell, A.S., and Butterworth, R.F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc. Soc. Exp. Biol. Med. 222:99–112.PubMedCrossRefGoogle Scholar
  25. Hermenegildo, C., Marcaida, G., Montoliu, C., Grisolia, S., Minana, M.D., and Felipo, V. (1996). NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res. 21:1237–1244.PubMedGoogle Scholar
  26. Hermenegildo, C., Monfort, P., and Felipo, V. (2000). Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31:709–715.PubMedCrossRefGoogle Scholar
  27. Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356:1–11.PubMedCrossRefGoogle Scholar
  28. Kimelberg, H.K. (1995). Currend concepts of brain edema - review of laboratory investigations. J. Neurosurg. 83:1051–1059.PubMedGoogle Scholar
  29. Kimelberg, H.K., and O'Connor, E.R. (1996). Swelling-induced depolarization of astrocyte membrane potentials. GLIA 1:219–242.Google Scholar
  30. Kosenko, E., Kaminsky, Y., Lopata, O., Muravyov, N., Kaminsky, A., Hermenegildo, C., and Felipo, V. (1998). Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication. Metab. Brain Dis. 13:29–41.PubMedCrossRefGoogle Scholar
  31. Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V. (1999). Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic. Biol. Med. 26:1369–1374.PubMedCrossRefGoogle Scholar
  32. Kosenko, E., Kaminsky, Y., Stavroskaya, I.G., and Felipo, V. (2000). Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo. Brain Res. 880:139–146.PubMedCrossRefGoogle Scholar
  33. Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Häussinger, D. (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306.PubMedGoogle Scholar
  34. Larsen, F.S., Gottstein, J., and Blei, A.T. (2001). Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J. Hepatol. 34:548–554.PubMedCrossRefGoogle Scholar
  35. Laubenberger, J., Häussinger, D., Bayer, S., Gufler, H., Hennig, J., and Langer, M. (1997). Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616.PubMedCrossRefGoogle Scholar
  36. Liao, S.L., and Chen, C.J. (2001). Differential effects of cytokines and redox potential on glutamate uptake in rat cortical glial cultures. Neurosci. Lett. 299:113–116.PubMedCrossRefGoogle Scholar
  37. Martinez, H.A., Bell, K.P., and Norenberg, M.D. (1977). Glutamine synthetase: glial localization in brain. Science 195:1356–1358.Google Scholar
  38. Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.PubMedCrossRefGoogle Scholar
  39. Mongin, A.A., and Kimelberg, H.K. (2002). ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. Cell. Physiol. 283:C569–C578.PubMedGoogle Scholar
  40. Morales, M.S., Vaca, L., Hernandez, C.A., and Pasantes, M.H. (1998). Osmotic swelling-induced changes in cytosolic calcium do not affect regulatory volume decrease in rat cultured suspended cerebellar astrocytes. J. Neurochem. 71:2330–2338.Google Scholar
  41. Moran, J., Sabanero, M., Meza, I., and Pasantes, M.H. (1996). Changes of actin cytoskeleton during swelling and regulatory volume decrease in cultured astrocytes. Am. J. Physiol. 271:C1901–C1907.PubMedGoogle Scholar
  42. Murthy, C.R., Rao, K.V., Bai, G., and Norenberg, M.D. (2001). Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66:282–288.PubMedCrossRefGoogle Scholar
  43. Norenberg, M.D. (1996). Astrocytic-ammonia interactions in hepatic encephalopathy. Semin. Liver. Dis. 16:245–253.PubMedCrossRefGoogle Scholar
  44. Norenberg, M.D., Itzhak, Y., and Bender, A.S. (1997). The peripheral benzodiazepine receptor and neurosteroids in hepatic encephalopathy. Adv. Exp. Med. Biol. 420:95–111.PubMedGoogle Scholar
  45. O'Connor, E.R., and Kimelberg, H.K. (1993). Role of calcium in astrocyte volume regulation and in the release of ions and amino acids. J. Neurosci. 13:2638–2650.PubMedGoogle Scholar
  46. Queiroz, G., Meyer, D.K., Meyer, A., Starke, K., and von Kugelgen, I. (1999). A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience 91:1171–1181.PubMedCrossRefGoogle Scholar
  47. Rama-Rao, K.V., Jayakumar, A.R., and Norenberg, D.M. (2003a). Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab. Brain Dis. 18:113–127.Google Scholar
  48. Rama-Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (2003b). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem. Int. 43:517–523.Google Scholar
  49. Reinehr, R., Schliess, F., Häussinger, D. (2003). Hyperosmolarity and CD95L trigger CD95/EGFR association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation. FASEB J; 10.96/fj02-0915fje.Google Scholar
  50. Reinehr, R., Becker, S., Höngen, A., Häussinger, D. (2004a). The Src family kinase Yes triggers hyperosmotic activation of the epidermal growth factor receptor and CD95. J. Biol. Chem. 279:23977–23987.CrossRefGoogle Scholar
  51. Reinehr, R., Görg, B., Höngen, A., Häussinger, D. (2004b). CD95-tyrosine nitration inhibits hyperosmotic and CD95 ligand-induced CD95 activation in rat hepatoytes. J. Biol. Chem. 279:10364–10373.CrossRefGoogle Scholar
  52. Ross, B.D., Jacobson, S., Villamil, F., Korula, J., Kreis, R., Ernst, T., Shonk, T., and Moats, R.A. (1994). Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 193:457–463.PubMedGoogle Scholar
  53. Schipke, C.G., Ohlemeyer, C., Matyash, M., Nolte, C., Kettenmann, H., and Kirchhoff, F. (2001). Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J. 15:1270– 1272.PubMedGoogle Scholar
  54. Schliess, F., Sinning, R., Fischer, R., Schmalenbach, C., and Häussinger, D. (1996). Calcium-dependent activation of Erk-1 and Erk-2 following hypo-osmotic astrocyte-swelling. Biochem. J. 319:167–171.Google Scholar
  55. Schliess, F., Görg, B., Fischer, R., Desjardins, P., Bidmon, H.J., Herrmann, A., Butterworth, R.F., Zilles, K., and Häussinger, D. (2002). Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 16:739–741.PubMedGoogle Scholar
  56. Schliess, F, Foster, N., Görg, B., Reinehr, R., and Häussinger, D. (2004). Astrocyte swelling increases protein tyrosine nitration in cultured rat astrocytes. GLIA 47:21–29PubMedCrossRefGoogle Scholar
  57. Sergeeva, O.A., Chepkova, A.N., Doreulee, N., Eriksson, K.S., Poelchen, W., Mönnighoff, I., Heller-Stilb, B., Warskulat, U., Häussinger, D., Haas, H.L. (2003). Taurine-induced long-lasting enhancement of synaptic transmission: role of transporters. J. Physiol. 550:911–919PubMedCrossRefGoogle Scholar
  58. Sinning, R., Schliess, F., Kubitz, R., and Häussinger, D. (1997). Osmosignalling in C6 glioma cells. FEBS Lett. 400:163–167.PubMedCrossRefGoogle Scholar
  59. Stewart, V.C., Sharpe, M.A., Clark, J.B., and Heales, S.J. (2000). Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J. Neurochem. 75:694–700.PubMedCrossRefGoogle Scholar
  60. Takahashi, H., Koehler, R.C., Brusilow, S.W., and Traystman, R.J. (1990). Glutamine synthetase inhibition prevents cerebral oedema during hyperammonemia. Acta Neurochir. Suppl. Wien. 51:346–347.PubMedGoogle Scholar
  61. Timmermann, L., Gross, J., Kircheis, G., Häussinger, D., and Schnitzler, A. (2002). Cortical origin of mini-asterixis in hepatic encephalopathy. Neurology 58:295–298.PubMedGoogle Scholar
  62. Timmermann, L., Gross, J., Butz, M., Kircheis, G., Häussinger, D., and Schnitzler, A. (2003). Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689– 692.PubMedGoogle Scholar
  63. Vaquero, J., Chung, C., Cahill, M.E., and Blei, A.T. (2003). Pathogenesis of hepatic encephalopathy in acute liver failure. Semin Liver Dis. 23:259–269.PubMedGoogle Scholar
  64. Vogels, B.A., Maas, M.A., Daalhuisen, J., Quack, G., and Chamuleau, R.A. (1997). Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology. 25:820–827.PubMedCrossRefGoogle Scholar
  65. Warren, K.S., and Schencker, S. (1964). Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J. Lab. Clin. Med. 64:442–449.PubMedGoogle Scholar
  66. Warskulat, U., Kreuels, S., Müller, H.W., and Häussinger, D. (2001). Identification of osmosensitive and ammonia-regulated genes in rat astrocytes by northern blotting and differential display reverse transcriptase-polymerase chain reaction. J. Hepatol. 35:358–366.PubMedCrossRefGoogle Scholar
  67. Willard, M.C., Koehler, R.C., Hirata, T., Cork, L.C., Takahashi, H., Traystman, R.J., and Brusilow, S.W. (1996). Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599.Google Scholar
  68. Xu, D., Wang, L., Olson, J.E., and Lu, L. (2001). Asymmetrical response of p38 kinase activation to volume changes in primary rat astrocytes. Exp. Biol. Med. 226:927–933.Google Scholar
  69. Zielinska, M., Law, R.O., and Albrecht, J. (2003). Excitotoxic mechanism of cell swelling in rat cerebral cortical slices treated acutely with ammonia. Neurochem. Int. 43:299–303.PubMedCrossRefGoogle Scholar
  70. Zoli, M., Jansson, A., Sykova, E., Agnati, L.F., and Fuxe, K. (1999). Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20:142–150.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Dieter Häussinger
    • 1
    • 2
  • Boris Görg
    • 1
  • Roland Reinehr
    • 1
  • Freimut Schliess
    • 1
  1. 1.Clinic for Gastroenterology, Hepatology and InfectiologyHeinrich-Heine-University DüsseldorfDüsseldorfGermany
  2. 2.Klinik für Gastroenterologie, Hepatologie und InfektiologieUniversitätsklinikum DüsseldorfDüsseldorfGermany

Personalised recommendations