Tropical lichen, Dirinaria consimilis, induces ROS-mediated activation of MAPKs and triggers caspase cascade mediated apoptosis in brain and cervical cancer cells


Lichens are the symbiotic association between photobiont algae and mycobiont fungi having diverse phytochemicals. However, they are still an underexplored natural resource for biological activities. In the present report, we have evaluated the anti-brain and anti-cervical cancer activity of tropical lichen, Dirinaria consimilis (DCME) through the cell viability assay, cell cycle analysis, annexin V-FLUOS staining, morphological analysis, ROS-induction mechanism, evaluation of antioxidant levels, and western blotting study. The WST-1-based cell viability assay showed the cytotoxic nature of DCME towards U87 (IC50-52.65 ± 1.04 µg/ml) and HeLa (IC50-77.60 ± 2.23 µg/ml) cells. Interestingly, DCME does not showed any toxicity towards non-malignant fibroblast cell line WI-38 (IC50-685.80 ± 19.51 µg/ml). Furthermore, the cell cycle analysis showed sub-G1 arrest (apoptosis), and annexin V-FLUOS staining showed an increase in early apoptosis population dose-dependently. Confocal-based morphological data confirmed the DNA condensation and fragmentation upon treatment. Furthermore, DCME treatment induces ROS and regulates the levels of antioxidant enzymes (SOD, Catalase, GST, and GSH) in both U87 and HeLa cells. Finally, the western blotting data revealed the increase in Bax/Bcl-2 ratio, activation of Bid, Caspase-8, -9 and -3 along with degradation of PARP. Moreover, regulation of MAP kinases and activation of p53 was also observed upon DCME treatment. Herein, we first reported the anticancer activity of D. consimilis against brain and cervical cancer cells. Performed in-depth anticancer study revealed the ROS-mediated regulation of MAP kinases and activation of caspase cascade in U87 and HeLa cells upon DCME treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The required data is associated with the manuscript.


  1. 1.

    World Health Organization (2020) Global cancer observatory. International agency for research on cancer. Accessed 10 Aug 2020

  2. 2.

    Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  Article  Google Scholar 

  3. 3.

    Zambare VP, Christopher LP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50(6):778–798

    Article  Google Scholar 

  4. 4.

    Shrestha G, Clair LLS (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 12(1):229–244

    CAS  Article  Google Scholar 

  5. 5.

    Tatipamula VB, Kukavica B (2020) Protective effects of extracts of lichen Dirinaria consimilis (Stirton) DD Awasthi in bifenthrin-and diazinon-induced oxidative stress in rat erythrocytes in vitro. Drug Chem Toxicol.

    Article  PubMed  Google Scholar 

  6. 6.

    Tatipamula VB, Vedula GS (2017) Anti-inflammatory properties of dirinaria consimilis extracts in albino rats. J Biomed Sci 4(1):3–8

    Article  Google Scholar 

  7. 7.

    Shendge AK, Panja S, Basu T, Mandal N (2020) A tropical lichen, dirinaria consimilis selectively induces apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Anticancer Agents Med Chem 20(10):1173–1187

    CAS  Article  Google Scholar 

  8. 8.

    Ghate NB, Chaudhuri D, Sarkar R, Sajem AL et al (2013) An antioxidant extract of tropical lichen, parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS ONE.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Panja S, Ghate NB, Mandal N (2016) A microalga, euglena tuba induces apoptosis and suppresses metastasis in human lung and breast carcinoma cells through ROS-mediated regulation of MAPKs. Cancer Cell Int 16(1):1–13

    Article  Google Scholar 

  10. 10.

    Nash TH (ed) (1996) Lichen biology, 2nd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  11. 11.

    Shrestha G, El-Naggar AM, St. Clair LL, O’Neill KL (2015) Anticancer activities of selected species of North American lichen extracts. Phytother Res 29(1):100–107

    Article  Google Scholar 

  12. 12.

    Rankovic BR, Kosanić MM, Stanojković TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens cladonia furcata, lecanora atra and lecanora muralis. BMC Complement Altern Med 11(1):1–8

    Article  Google Scholar 

  13. 13.

    Goga M, Kello M, Vilkova M, Petrova K, Backor M et al (2019) Oxidative stress mediated by gyrophoric acid from the lichen umbilicaria hirsuta affected apoptosis and stress/survival pathways in HeLa cells. BMC Complement Altern Med 19(1):1–13

    CAS  Article  Google Scholar 

  14. 14.

    Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V (2018) Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem 441(1–2):109–124

    CAS  Article  Google Scholar 

  15. 15.

    Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427

    CAS  Article  Google Scholar 

  16. 16.

    Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13(24):7254–7263

    CAS  Article  Google Scholar 

  17. 17.

    Leibowitz B, Yu J (2010) Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther 9(6):417–422

    CAS  Article  Google Scholar 

  18. 18.

    Li H, Zhu H, Xu CJ et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell 4:491–501

    Article  Google Scholar 

  19. 19.

    Javle M, Curtin NJ (2011) The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer 105(8):1114–1122

    CAS  Article  Google Scholar 

  20. 20.

    Ames BN, Shigenaga MK, Hagen TM (1993) Oxidant, antioxidant and degenerative disease of aging. Proc Natl Acad Sci 90:7915–7922

    CAS  Article  Google Scholar 

  21. 21.

    Krishnamurthy P, Wadhwani A (2012) Antioxidant enzymes and human health. Antioxid Enzyme 1:3–18

    Google Scholar 

  22. 22.

    Dunning S, Ur Rehman A, Tiebosch MH, Hannivoort RA, Haijer FW et al (2013) Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta (BBA) 1832(12):2027–2034

    CAS  Article  Google Scholar 

  23. 23.

    Davison CA, Durbin SM, Thau MR, Zellmer VR, Chapman SE et al (2013) Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 73(12):3704–3715

    CAS  Article  Google Scholar 

  24. 24.

    Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G (2009) Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur J Intern Med 20(4):403–406

    CAS  Article  Google Scholar 

  25. 25.

    Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82(10):1384–1390

    CAS  Article  Google Scholar 

  26. 26.

    Zalewska-Ziob M, Adamek B, Kasperczyk J, Romuk E, Hudziec E et al (2019) Activity of antioxidant enzymes in the tumor and adjacent noncancerous tissues of non-small-cell lung cancer. Oxid Med Cell Longev 2019:1–9

    Article  Google Scholar 

  27. 27.

    Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B (2002) Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem 277:17179–17187

    CAS  Article  Google Scholar 

  28. 28.

    Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetics functions. PLoS ONE.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    CAS  Article  Google Scholar 

  30. 30.

    Helm CW, States JC (2009) Enhancing the efficacy of cisplatin in ovarian cancer treatment - could arsenic have a role. J Ovar Res.

    Article  Google Scholar 

  31. 31.

    Shendge AK, Chaudhuri D, Basu T, Mandal N (2020) A natural flavonoid, apigenin isolated from clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Clin Transl Oncol.

    Article  PubMed  Google Scholar 

  32. 32.

    Mao X, Yu CR, Li WH, Li WX (2008) Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res 18(8):879–888

    CAS  Article  Google Scholar 

  33. 33.

    Shi Y, Nikulenkov F, Zawacka-Pankau J, Li H, Gabdoulline R et al (2014) ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ 21(4):612–623

    CAS  Article  Google Scholar 

Download references


AKS is grateful to the Council of Scientific and Industrial Research (CSIR) Govt. of India for providing the fellowship.


This research did not receive any specific Grant from funding agencies.

Author information



Corresponding author

Correspondence to Nripendranath Mandal.

Ethics declarations

Conflict of interest

AKS, SP, and NM declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shendge, A.K., Panja, S. & Mandal, N. Tropical lichen, Dirinaria consimilis, induces ROS-mediated activation of MAPKs and triggers caspase cascade mediated apoptosis in brain and cervical cancer cells. Mol Cell Biochem (2021).

Download citation


  • Anticancer
  • ROS
  • Antioxidant enzymes
  • Caspase cascade pathway
  • MAP kinases
  • p53