Bcl-2/Bcl-xL inhibitor navitoclax increases the antitumor effect of Chk1 inhibitor prexasertib by inducing apoptosis in pancreatic cancer cells via inhibition of Bcl-xL but not Bcl-2

Abstract

In our previous study, we showed that prexasertib, a checkpoint kinase 1 (Chk1) inhibitor, enhances the effects of standard drugs for pancreatic cancer, including gemcitabine (GEM), S-1, and the combination of GEM and S-1 (GS). The combination of prexasertib and GS has a strong antitumor effect and induces apoptosis in pancreatic cancer cells by downregulating anti-apoptotic protein Bcl-2. In the present study, we investigated the combined effect of GEM, S-1, and prexasertib with a selective Bcl-2 inhibitor (venetoclax) and a non-selective Bcl-2 inhibitor (navitoclax) in SUIT-2 pancreatic cancer cells. An MTT assay revealed that the combination of prexasertib with navitoclax showed a synergistic effect but the combination with venetoclax did not. Investigation of the pancreatic cancer cell lines SUIT-2, MIA PaCa-2, and BxPC-3 revealed that BxPC-3 also showed a high synergistic effect when combined with prexasertib and navitoclax but not venetoclax. Mechanistic analysis of the combined effect showed that apoptosis was induced. Bcl-2 knockdown with siRNA and prexasertib treatment did not induce apoptosis, whereas Bcl-xL knockdown with siRNA and prexasertib treatment resulted in strong induction of apoptosis. In addition, among the three cell lines, the combined effect of prexasertib and navitoclax resulted in increased apoptotic cell death because the protein expression levels of Bcl-xL and Chk1 were higher. Our results demonstrate that the combination of prexasertib and navitoclax has a strong antitumor effect and induces apoptosis in pancreatic cancer cells by downregulating Bcl-xL. Simultaneous inhibition of Chk1 and Bcl-xL could be a new strategy for treating pancreatic cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included this published article.

References

  1. 1.

    Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    CAS  Article  Google Scholar 

  2. 2.

    Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T, Ohashi Y (2011) Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol 29:4387–4393

    CAS  Article  Google Scholar 

  3. 3.

    Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, Miyashita K, Nishizaki T, Kobayashi O, Takiyama W, Toh Y, Nagaie T, Takagi S, Yamamura Y, Yanaoka K, Orita H, Takeuchi M (2008) S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol 9:215–221

    CAS  Article  Google Scholar 

  4. 4.

    Okamoto I, Yoshioka H, Morita S, Ando M, Takeda K, Seto T, Yamamoto N, Saka H, Asami K, Hirashima T, Kudoh S, Satouchi M, Ikeda N, Iwamoto Y, Sawa T, Miyazaki M, Tamura K, Kurata T, Fukuoka M, Nakagawa K (2010) Phase III trial comparing oral S-1 plus carboplatin with paclitaxel plus carboplatin in chemotherapy-naive patients with advanced non-small-cell lung cancer: results of a west Japan oncology group study. J Clin Oncol 28:5240–5246

    CAS  Article  Google Scholar 

  5. 5.

    Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, Fukutomi A, Sugimori K, Baba H, Yamao K, Shimamura T, Sho M, Kitano M, Cheng AL, Mizumoto K, Chen JS, Furuse J, Funakoshi A, Hatori T, Yamaguchi T, Egawa S, Sato A, Ohashi Y, Okusaka T, Tanaka M (2013) Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin Oncol 31:1640–1648

    CAS  Article  Google Scholar 

  6. 6.

    Yoshizawa J, Takizawa A, Takeuchi O, Hiraku O, Sasaki K, Morimoto Y, Atsuda K, Inoue G, Suzuki Y, Asanuma F, Yamada Y (2009) Experimental study of combination therapy with S-1 against pancreatic cancer. Cancer Chemother Pharmacol 64:1211–1219

    CAS  Article  Google Scholar 

  7. 7.

    Morimoto Y, Takeuchi O, Takizawa A, Yoneyama H, Asanuma F, Suzuki Y, Atsuda K, Yamada Y (2012) Effect of a combination of S-1 and gemcitabine on cell cycle regulation in pancreatic cancer cell lines. Anti-cancer Drug 23:505–514

    CAS  Article  Google Scholar 

  8. 8.

    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  Article  Google Scholar 

  9. 9.

    Morimoto Y, Takada K, Takeuchi O, Takagi A, Watanabe K, Hirohara M, Hamamoto T, Masuda Y (2019) Prexasertib increases the sensitivity of pancreatic cancer cells to gemcitabine and S1. Oncol Rep 43:689699

    Google Scholar 

  10. 10.

    Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  Article  Google Scholar 

  11. 11.

    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    CAS  Article  Google Scholar 

  12. 12.

    Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, Owen C, Gerecitano J, Robak T, De la Serna J, Jaeger U, Cartron G, Montillo M, Humerickhouse R, Punnoose EA, Li Y, Boyer M, Humphrey K, Mobasher M, Kater AP (2018) Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 378:1107–1120

    CAS  Article  Google Scholar 

  13. 13.

    Cramer P, von Tresckow J, Bahlo J, Robrecht S, Langerbeins P, Al-Sawaf O, Engelke A, Fink AM, Fischer K, Tausch E, Seiler T, Fischer von Weikersthal L, Hebart H, Kreuzer KA, Bottcher S, Ritgen M, Kneba M, Wendtner CM, Stilgenbauer S, Eichhorst B, Hallek M (2018) Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 19:1215–1228

    CAS  Article  Google Scholar 

  14. 14.

    Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428

    CAS  Article  Google Scholar 

  15. 15.

    Suvarna V, Singh V, Murahari M (2019) Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur J Pharmacol 862:172655

    Article  Google Scholar 

  16. 16.

    Shirasaka T, Shimamato Y, Ohshimo H, Yamaguchi M, Kato T, Yonekura K, Fukushima M (1996) Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. Anti-cancer Drug 7:548–557

    CAS  Article  Google Scholar 

  17. 17.

    Hirata K, Horikoshi N, Aiba K, Okazaki M, Denno R, Sasaki K, Nakano Y, Ishizuka H, Yamada Y, Uno S, Taguchi T, Shirasaka T (1999) Pharmacokinetic study of S-1, a novel oral fluorouracil antitumor drug. Clin Cancer Res 5:2000–2005

    CAS  PubMed  Google Scholar 

  18. 18.

    Ko TK, Chuah CT, Huang JW, Ng KP, Ong ST (2014) The BCL2 inhibitor ABT-199 significantly enhances imatinib-induced cell death in chronic myeloid leukemia progenitors. Oncotarget 5:9033–9038

    Article  Google Scholar 

  19. 19.

    Moreau P, Chanan-Khan A, Roberts AW, Agarwal AB, Facon T, Kumar S, Touzeau C, Punnoose EA, Cordero J, Munasinghe W, Jia J, Salem AH, Freise KJ, Leverson JD, Enschede SH, Ross JA, Maciag PC, Verdugo M, Harrison SJ (2017) Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood 130:2392–2400

    CAS  Article  Google Scholar 

  20. 20.

    Takahashi H, Chen MC, Pham H, Matsuo Y, Ishiguro H, Reber HA, Takeyama H, Hines OJ, Eibl G (2013) Simultaneous knock-down of Bcl-xL and Mcl-1 induces apoptosis through Bax activation in pancreatic cancer cells. Biochim Biophys Acta 1833:2980–2987

    CAS  Article  Google Scholar 

  21. 21.

    Kour S, Rana S, Contreras JI, King HM, Robb CM, Sonawane YA, Bendjennat M, Crawford AJ, Barger CJ, Kizhake S, Luo X, Hollingsworth MA, Natarajan A (2019) CDK5 inhibitor downregulates Mcl-1 and sensitizes pancreatic cancer cell lines to navitoclax. Mol Pharmacol 96:419–429

    CAS  Article  Google Scholar 

  22. 22.

    Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Doi R, Kato M, Shimada Y, Imamura M (1999) Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 56:73–82

    CAS  Article  Google Scholar 

  23. 23.

    Hari Y, Harashima N, Tajima Y, Harada M (2015) Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL. Oncotarget 6:41902–41915

    Article  Google Scholar 

  24. 24.

    Goto H, Izawa I, Li P, Inagaki M (2012) Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci 103:1195–1200

    CAS  Article  Google Scholar 

  25. 25.

    King C, Diaz HB, McNeely S, Barnard D, Dempsey J, Blosser W, Beckmann R, Barda D, Marshall MS (2015) LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol Cancer Ther 14:2004–2013

    CAS  Article  Google Scholar 

  26. 26.

    Ghelli Luserna Di Rora A, Iacobucci I, Imbrogno E, Papayannidis C, Derenzini E, Ferrari A, Guadagnuolo V, Robustelli V, Parisi S, Sartor C, Abbenante MC, Paolini S, Martinelli G (2016) Prexasertib, a Chk1/Chk2 inhibitor, increases the effectiveness of conventional therapy in B-/T-cell progenitor acute lymphoblastic leukemia. Oncotarget 7:53377–53391

    Article  Google Scholar 

  27. 27.

    Zeng L, Beggs RR, Cooper TS, Weaver AN, Yang ES (2017) Combining Chk1/2 inhibition with cetuximab and radiation enhances in vitro and in vivo cytotoxicity in head and neck squamous cell carcinoma. Mol Cancer Ther 16:591–600

    CAS  Article  Google Scholar 

  28. 28.

    Lowery CD, VanWye AB, Dowless BW, Falcon BL, Stewart J, Stephens J, Beckmann RP, Bence Lin A, Stancato LF (2017) The checkpoint kinase 1 inhibitor prexasertib induces regression of preclinical models of human neuroblastoma. Clin Cancer Res 23:4354–4363

    CAS  Article  Google Scholar 

  29. 29.

    Brill E, Yokoyama T, Nair J, Yu M, Ahn YR, Lee JM (2017) Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 8:111026–111040

    Article  Google Scholar 

  30. 30.

    Angius G, Tomao S, Stati V, Vici P, Bianco V, Tomao F (2019) Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development. Cancer Chemother Pharmacol 85:9–20

    Article  Google Scholar 

  31. 31.

    Hong DS, Moore K, Patel M, Grant SC, Burris HA 3rd, William WN Jr, Jones S, Meric-Bernstam F, Infante J, Golden L, Zhang W, Martinez R, Wijayawardana S, Beckmann R, Lin AB, Eng C, Bendell J (2018) Evaluation of prexasertib, a checkpoint kinase 1 inhibitor, in a Phase Ib study of patients with squamous cell carcinoma. Clin Cancer Res 24:3263–3272

    CAS  Article  Google Scholar 

  32. 32.

    Lee JM, Nair J, Zimmer A, Lipkowitz S, Annunziata CM, Merino MJ, Swisher EM, Harrell MI, Trepel JB, Lee MJ, Bagheri MH, Botesteanu DA, Steinberg SM, Minasian L, Ekwede I, Kohn EC (2018) Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. Lancet Oncol 19:207–215

    CAS  Article  Google Scholar 

  33. 33.

    Bendell JC, Bischoff HG, Hwang J, Reinhardt HC, Zander T, Wang X, Hynes S, Pitou C, Campbell R, Iversen P, Farrington DL, Bell-McGuinn K, Thomas MA (2019) A phase 1 dose-escalation study of checkpoint kinase 1 (CHK1) inhibitor prexasertib in combination with p38 mitogen-activated protein kinase (p38 MAPK) inhibitor ralimetinib in patients with advanced or metastatic cancer. Invest New Drugs. https://doi.org/10.1007/s10637-019-00873-6

    Article  PubMed  Google Scholar 

  34. 34.

    Zhao J, Niu X, Li X, Edwards J, Wang G, Wang Y, Taub JW, Lin H, Ge Y (2016) Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget 7:34785–34799

    Article  Google Scholar 

  35. 35.

    Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, Josefsson EC, Alwis I, Ono A, Willcox A, Andrews RK, Mason KD, Salem HH, Huang DC, Kile BT, Roberts AW, Jackson SP (2011) Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118:1663–1674

    CAS  Article  Google Scholar 

  36. 36.

    Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong H, Chiu YL, Cui Y, Busman T, Elmore SW, Rosenberg SH, Krivoshik AP, Enschede SH, Humerickhouse RA (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159

    CAS  Article  Google Scholar 

  37. 37.

    Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C, Bennouna J, Bachet JB, Khemissa-Akouz F, Pere-Verge D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    CAS  Article  Google Scholar 

  38. 38.

    von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  Google Scholar 

  39. 39.

    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    CAS  Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YM. KT coordinated the experiments and the writing of the manuscript. OT supervised the research and experiments. KW, MH, and TH reviewed the data and coordinated the writing of the manuscript. YM coordinated the scientific work and the writing of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshihito Morimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethics approval/waivers were required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morimoto, Y., Takada, K., Takeuchi, O. et al. Bcl-2/Bcl-xL inhibitor navitoclax increases the antitumor effect of Chk1 inhibitor prexasertib by inducing apoptosis in pancreatic cancer cells via inhibition of Bcl-xL but not Bcl-2. Mol Cell Biochem (2020). https://doi.org/10.1007/s11010-020-03796-6

Download citation

Keywords

  • Prexasertib
  • Venetoclax
  • Navitoclax
  • Checkpoint kinase 1
  • Bcl-2
  • Bcl-xL