Protein phosphorylation profiling of peripheral nerve regeneration after autologous nerve grafting

Abstract

Autologous nerve grafting is the golden standard therapeutic approach of peripheral nerve injury. However, the clinical effect of autologous nerve grafting is still unsatisfying. To achieve better clinical functional recovery, it is of an impending need to expand our understanding of the dynamic cellular and molecular changes after nerve transection and autologous nerve transplantation. To address this aim, in the current study, rats were subjected to sciatic nerve transection and autologous nerve grafting. Rat sciatic nerve segments were collected at 4, 7, and 14 days after surgery and subjected to antibody array analysis to determine phosphoprotein profiling patterns. Compared with rats that underwent sham surgery, a total of 48, 19, and 75 differentially expressed phosphoproteins with fold changes > 2 or < −2 were identified at 4, 7, and 14 days after autologous nerve grafting, respectively. Several phosphoproteins, including STAM2 (Phospho-Tyr192) and Tau (Phospho-Ser422), were found to be differentially expressed at multiple time points, suggesting the importance of the phosphorylation of these proteins. Western blot validation of the expression patterns of STAM2 (Phospho-Tyr192) indicated the accuracy of antibody array assay. Bioinformatic analysis of these differentially expressed proteins suggested that cellular behavior and organ morphology were significantly involved biological functions while cell behavior and immune response-related signaling pathways were significantly involved canonical signaling pathways. These outcomes contributed to the illumination of the molecular mechanisms underlying autologous nerve grafting from the phosphoprotein profiling perspective.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119(9):1951–1965. https://doi.org/10.1016/j.clinph.2008.03.018

    Article  PubMed  Google Scholar 

  2. 2.

    Tian L, Prabhakaran MP, Ramakrishna S (2015) Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2(1):31–45. https://doi.org/10.1093/rb/rbu017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L (2014) Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys 68(3):449–454. https://doi.org/10.1007/s12013-013-9742-1

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Belkas JS, Shoichet MS, Midha R (2004) Peripheral nerve regeneration through guidance tubes. Neurol Res 26(2):151–160. https://doi.org/10.1179/016164104225013798

    Article  PubMed  Google Scholar 

  5. 5.

    Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93(2):204–230. https://doi.org/10.1016/j.pneurobio.2010.11.002

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Liu GY, Jin Y, Zhang Q, Li R (2015) Peripheral nerve repair: a hot spot analysis on treatment methods from 2010 to 2014. Neural Regen Res 10(6):996–1002. https://doi.org/10.4103/1673-5374.158368

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Yi S, Xu L, Gu X (2018) Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol 10000:10000. https://doi.org/10.1016/j.expneurol.2018.05.016

    CAS  Article  Google Scholar 

  9. 9.

    Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8(4):243–252

    CAS  Article  Google Scholar 

  10. 10.

    Yi S, Tang X, Yu J, Liu J, Ding F, Gu X (2017) Microarray and qPCR analyses of Wallerian degeneration in rat sciatic nerves. Front Cell Neurosci 11:22. https://doi.org/10.3389/fncel.2017.00022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yu J, Gu X, Yi S (2016) Ingenuity pathway analysis of gene expression profiles in distal nerve stump following nerve injury: insights into Wallerian degeneration. Front Cell Neurosci 10:274. https://doi.org/10.3389/fncel.2016.00274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yi S, Zhang H, Gong L, Wu J, Zha G, Zhou S, Gu X, Yu B (2015) Deep Sequencing and bioinformatic analysis of lesioned sciatic nerves after crush injury. PLoS ONE 10(12):e0143491. https://doi.org/10.1371/journal.pone.0143491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549(7673):533–537. https://doi.org/10.1038/nature24014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bhola NE, Thomas SM, Freilino M, Joyce S, Sahu A, Maxwell J, Argiris A, Seethala R, Grandis JR (2011) Targeting GPCR-mediated p70S6K activity may improve head and neck cancer response to cetuximab. Clin Cancer Res 17(15):4996–5004. https://doi.org/10.1158/1078-0432.CCR-10-3406

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Oliveros JC (2007–2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html.

  16. 16.

    Zhou S, Yu B, Qian T, Yao D, Wang Y, Ding F, Gu X (2011) Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection. Neurosci Lett 494(2):89–93. https://doi.org/10.1016/j.neulet.2011.02.064

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yu B, Zhou S, Qian T, Wang Y, Ding F, Gu X (2011) Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats. Acta Biochim Biophys Sin (Shanghai) 43(11):909–915. https://doi.org/10.1093/abbs/gmr083

    CAS  Article  Google Scholar 

  18. 18.

    Li S, Yu B, Wang Y, Yao D, Zhang Z, Gu X (2011) Identification and functional annotation of novel microRNAs in the proximal sciatic nerve after sciatic nerve transection. Sci China Life Sci 54(9):806–812. https://doi.org/10.1007/s11427-011-4213-7

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 6(9):e24612. https://doi.org/10.1371/journal.pone.0024612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, Ding F, Gu X (2013) Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 534:117–122. https://doi.org/10.1016/j.neulet.2012.12.014

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Li S, Xue C, Yuan Y, Zhang R, Wang Y, Wang Y, Yu B, Liu J, Ding F, Yang Y, Gu X (2015) The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep 5:16888. https://doi.org/10.1038/srep16888

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B (2018) Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Exp Neurol 308:80–89. https://doi.org/10.1016/j.expneurol.2018.07.003

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Yao C, Wang Y, Zhang H, Feng W, Wang Q, Shen D, Qian T, Liu F, Mao S, Gu X, Yu B (2018) lncRNA TNXA-PS1 modulates Schwann cells by functioning as a competing endogenous RNA following nerve injury. J Neurosci 38(29):6574–6585. https://doi.org/10.1523/JNEUROSCI.3790-16.2018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. https://doi.org/10.1016/j.cell.2006.09.026

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Padrao AI, Vitorino R, Duarte JA, Ferreira R, Amado F (2013) Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 12(10):4257–4267. https://doi.org/10.1021/pr4003917

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ge Z, Diao H, Yu M, Ji X, Liu Q, Chang X, Wu Q (2017) Connexin 43 mediates changes in protein phosphorylation in HK-2 cells during chronic cadmium exposure. Environ Toxicol Pharmacol 53:184–190. https://doi.org/10.1016/j.etap.2017.06.003

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Uddin S, Chamdin A, Platanias LC (1995) Interaction of the transcriptional activator Stat-2 with the type I interferon receptor. J Biol Chem 270(42):24627–24630

    CAS  Article  Google Scholar 

  28. 28.

    Li X, Leung S, Qureshi S, Darnell JE Jr, Stark GR (1996) Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-alpha. J Biol Chem 271(10):5790–5794

    CAS  Article  Google Scholar 

  29. 29.

    Kapuralin K, Van Ginneken C, Curlin M, Timmermans JP, Gajovic S (2012) Neurons and a subset of interstitial cells of Cajal in the enteric nervous system highly express Stam2 gene. Anat Rec (Hoboken) 295(1):113–120. https://doi.org/10.1002/ar.21522

    CAS  Article  Google Scholar 

  30. 30.

    Kapuralin K, Curlin M, Mitrecic D, Kosi N, Schwarzer C, Glavan G, Gajovic S (2015) STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci 67:104–115. https://doi.org/10.1016/j.mcn.2015.06.009

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Curlin M, Lucic V, Gajovic S (2006) Splice variant of mouse Stam2 mRNA in nervous and muscle tissue contains additional exon with stop codon within region coding for VHS domain. Croat Med J 47(1):16–24

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hu W, Zhang X, Tung YC, Xie S, Liu F, Iqbal K (2016) Hyperphosphorylation determines both the spread and the morphology of tau pathology. Alzheimers Dement 12(10):1066–1077. https://doi.org/10.1016/j.jalz.2016.01.014

    Article  PubMed  Google Scholar 

  33. 33.

    Hu W, Wu F, Zhang Y, Gong CX, Iqbal K, Liu F (2017) Expression of tau pathology-related proteins in different brain regions: a molecular basis of tau pathogenesis. Front Aging Neurosci 9:311. https://doi.org/10.3389/fnagi.2017.00311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zha GB, Shen M, Gu XS, Yi S (2016) Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration. Neural Regen Res 11(9):1506–1511. https://doi.org/10.4103/1673-5374.191227

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Xing L, Cheng Q, Zha G, Yi S (2017) Transcriptional profiling at high temporal resolution reveals robust immune/inflammatory responses during rat sciatic nerve recovery. Mediators Inflamm 2017:3827841. https://doi.org/10.1155/2017/3827841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Guo Q, Zhu H, Wang H, Zhang P, Wang S, Sun Z, Li S, Xue C, Gu X, Cui S (2018) Transcriptomic landscapes of immune response and axonal regeneration by integrative analysis of molecular pathways and interactive networks post-sciatic nerve transection. Front Neurosci 12:457. https://doi.org/10.3389/fnins.2018.00457

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Geoffroy CG, Lorenzana AO, Kwan JP, Lin K, Ghassemi O, Ma A, Xu N, Creger D, Liu K, He Z, Zheng B (2015) Effects of PTEN and Nogo codeletion on corticospinal axon sprouting and regeneration in mice. J Neurosci 35(16):6413–6428. https://doi.org/10.1523/JNEUROSCI.4013-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z (2013) Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 33(39):15350–15361. https://doi.org/10.1523/JNEUROSCI.2510-13.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223(1):45–50. https://doi.org/10.1016/j.expneurol.2009.12.032

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Nantong University Undergraduate Innovation Program [201910304032Z] and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sheng Yi or Jianghong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Shen, Y., Qian, T. et al. Protein phosphorylation profiling of peripheral nerve regeneration after autologous nerve grafting. Mol Cell Biochem (2020). https://doi.org/10.1007/s11010-020-03781-z

Download citation

Keywords

  • Peripheral nerve injury
  • Autologous nerve grafting
  • phosphoprotein profiling
  • Bioinformatic analysis