LncRNA EWSAT1 upregulates CPEB4 via miR-330-5p to promote cervical cancer development


Long non‐coding RNA (lncRNA) Ewing sarcoma associated transcript 1 (EWSAT1) is an oncogene in a variety of tumors. Here, we planned to demonstrate EWSAT1 function in cervical cancer and further illustrate its underlying mechanism. EWSAT1 expression in cervical cancer was evaluated through qRT-PCR. Colony forming capacity was measured by colony formation assay and cell proliferation ability was measured by CCK-8 kit. Wound healing experiment was applied to test the cell migration and transwell assay was applied to test the invasion ability. Luciferase assay was employed to demonstrate EWSAT1 and miR-330-5p interaction. In cervical cancer, the expression of EWSAT1 was enhanced and contributed to the poor prognosis. Downregulated EWSAT1 expression inhibited Hela cell migration, proliferation, and invasion. EWSAT1 targeted to miR-330-5p and upregulated cytoplasmic polyadenylation element-binding protein 4 (CPEB4) expression by sponging miR-330-5p. Our study revealed that EWSAT1 enhances CPEB4 expression through sponging miR-330-5p, thereby promoting cervical cancer development, which might provide potential therapeutic targets for clinically cervical cancer patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Boom K, Lopez M, Daheri M, Gowen R, Milbourne A, Toscano P, Carey C, Guerra L, Carvajal JM, Marin E, Baker E, Fisher-Hoch S, Rodriguez AM, Burkalter N, Cavazos B, Gasca M, Cuellar MM, Robles E, Lopez E, Schmeler K (2019) Perspectives on cervical cancer screening and prevention: challenges faced by providers and patients along the Texas-Mexico border. Perspect Public Health 139:199–205. https://doi.org/10.1177/1757913918793443

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Morales-Campos DY, Snipes SA, Villarreal EK, Crocker LC, Guerrero A, Fernandez ME (2018) Cervical cancer, human papillomavirus (HPV), and HPV vaccination: exploring gendered perspectives, knowledge, attitudes, and cultural taboos among Mexican American adults. Ethn Health. https://doi.org/10.1080/13557858.2018.1494821

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chen L, Luan S, Xia B, Liu Y, Gao Y, Yu H, Mu Q, Zhang P, Zhang W, Zhang S, Wei G, Yang M, Li K (2018) Integrated analysis of HPV-mediated immune alterations in cervical cancer. Gynecol Oncol 149:248–255. https://doi.org/10.1016/j.ygyno.2018.01.031

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mabuchi S, Matsumoto Y, Komura N, Sawada M, Tanaka M, Yokoi E, Kozasa K, Yoshimura A, Kuroda H, Kimura T (2017) The efficacy of surgical treatment of recurrent or persistent cervical cancer that develops in a previously irradiated field: a monoinstitutional experience. Int J Clin Oncol 22:927–936. https://doi.org/10.1007/s10147-017-1134-x

    Article  PubMed  Google Scholar 

  5. 5.

    Pereira E, Cooper HH, Zelaya PG, Creasman W, Price FV, Gupta V, Chuang L (2017) Concurrent chemoradiation versus radiotherapy alone for the treatment of locally advanced cervical cancer in a low-resource setting. Gynecol Oncol Rep 19:50–52. https://doi.org/10.1016/j.gore.2016.12.006

    Article  PubMed  Google Scholar 

  6. 6.

    Menderes G, Black J, Schwab CL, Santin AD (2016) Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther 16:83–98. https://doi.org/10.1586/14737140.2016.1121108

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Soudyab M, Iranpour M, Ghafouri-Fard S (2016) The role of long non-coding RNAs in breast cancer. Arch Iran Med 19:508–517

    PubMed  Google Scholar 

  8. 8.

    Ghafouri-Fard S, Taheri M (2019) Long non-coding RNA signature in gastric cancer. Exp Mol Pathol 113:104365. https://doi.org/10.1016/j.yexmp.2019.104365

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5:e944014. https://doi.org/10.4161/21541272.2014.944014

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Marques Howarth M, Simpson D, Ngok SP, Nieves B, Chen R, Siprashvili Z, Vaka D, Breese MR, Crompton BD, Alexe G, Hawkins DS, Jacobson D, Brunner AL, West R, Mora J, Stegmaier K, Khavari P, Sweet-Cordero EA (2014) Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J Clin Invest 124:5275–5290. https://doi.org/10.1172/JCI72124

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Fu X, Zhang L, Dan L, Wang K, Xu Y (2017) LncRNA EWSAT1 promotes ovarian cancer progression through targeting miR-330-5p expression. Am J Transl Res 9:4094–4103

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang GY, Zhang JF, Hu XM, Luo ZP, Ma YZ (2017) Clinical significance of long non-coding RNA EWSAT1 as a novel prognostic biomarker in osteosarcoma. Eur Rev Med Pharmacol Sci 21:5337–5341. https://doi.org/10.26355/eurrev_201712_13918

    Article  PubMed  Google Scholar 

  13. 13.

    Sun L, Yang C, Xu J, Feng Y, Wang L, Cui T (2016) Long noncoding RNA EWSAT1 promotes osteosarcoma cell growth and metastasis through suppression of MEG3 expression. DNA Cell Biol 35:812–818. https://doi.org/10.1089/dna.2016.3467

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Song P, Yin SC (2016) Long non-coding RNA EWSAT1 promotes human nasopharyngeal carcinoma cell growth in vitro by targeting miR-326/-330-5p. Aging (Albany NY) 8:2948–2960. https://doi.org/10.18632/aging.101103

    CAS  Article  Google Scholar 

  15. 15.

    Zhang R, Li JB, Yan XF, Jin K, Li WY, Xu J, Zhao J, Bai JH, Chen YZ (2018) Increased EWSAT1 expression promotes cell proliferation, invasion and epithelial-mesenchymal transition in colorectal cancer. Eur Rev Med Pharmacol Sci 22:6801–6808. https://doi.org/10.26355/eurrev_201810_16146

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ivshina M, Alexandrov IM, Vertii A, Doxsey S, Richter JD (2015) CPEB regulation of TAK1 synthesis mediates cytokine production and the inflammatory immune response. Mol Cell Biol 35:610–618. https://doi.org/10.1128/MCB.00800-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Fernandez-Miranda G, Mendez R (2012) The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 11:460–472. https://doi.org/10.1016/j.arr.2012.03.004

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wang XP, Cooper NG (2010) Comparative in silico analyses of cpeb1-4 with functional predictions. Bioinform Biol Insights 4:61–83. https://doi.org/10.4137/bbi.s5087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Fernandez-Miranda G, Iglesias M, Alameda F, Moreno M, Eliscovich C, Eyras E, Real FX, Mendez R, Navarro P (2011) Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 18:83–90. https://doi.org/10.1038/nm.2540

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhong X, Xiao Y, Chen C, Wei X, Hu C, Ling X, Liu X (2015) MicroRNA-203-mediated posttranscriptional deregulation of CPEB4 contributes to colorectal cancer progression. Biochem Biophys Res Commun 466:206–213. https://doi.org/10.1016/j.bbrc.2015.09.008

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wang HX, Qin R, Mao J, Huang QL, Hong F, Li F, Gong ZY, Xu T, Yan Y, Chao SH, Zhang SK, Chen JX (2018) CPEB4 regulates glioblastoma cell proliferation and predicts poor outcome of patients. Clin Neurol Neurosurg 169:92–97. https://doi.org/10.1016/j.clineuro.2018.04.008

    Article  PubMed  Google Scholar 

  22. 22.

    Lu R, Zhou Z, Yu W, Xia Y, Zhi X (2017) CPEB4 promotes cell migration and invasion via upregulating Vimentin expression in breast cancer. Biochem Biophys Res Commun 489:135–141. https://doi.org/10.1016/j.bbrc.2017.05.112

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Jiang H, Wang B, Gao Z, Song K (2018) The research progress of CPEB4 in tumor. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 32:1038–1033

    Google Scholar 

  24. 24.

    Cortes-Guiral D, Pastor-Iodate C, Diaz Del Arco C, Del Puerto-Nevado L, Fernandez-Acenero MJ (2017) CPEB4 immunohistochemical expression is associated to prognosis in stage IV colorectal carcinoma. Pathol Res Pract 213:639–642. https://doi.org/10.1016/j.prp.2017.04.020

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-Gonzalez JL, Pico S, Hernandez IH, Diaz-Hernandez JI, Belloc E, Rodolosse A, Parikshak NN, Penagarikano O, Fernandez-Chacon R, Irimia M, Navarro P, Geschwind DH, Mendez R, Lucas JJ (2018) Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature 560:441–446. https://doi.org/10.1038/s41586-018-0423-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73. https://doi.org/10.1111/j.1432-1033.2004.04389.x

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Neville PJ, Conti DV, Krumroy LM, Catalona WJ, Suarez BK, Witte JS, Casey G (2003) Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 36:332–339. https://doi.org/10.1002/gcc.10165

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ, Hebbring SJ, Anderson S, French AJ, Thibodeau SN (2003) Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72:759–762. https://doi.org/10.1086/368230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ (2009) MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28:3360–3370. https://doi.org/10.1038/onc.2009.192

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Mao Y, Chen H, Lin Y, Xu X, Hu Z, Zhu Y, Wu J, Xu X, Zheng X, Xie L (2013) microRNA-330 inhibits cell motility by downregulating Sp1 in prostate cancer cells. Oncol Rep 30:327–333. https://doi.org/10.3892/or.2013.2452

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Qu S, Yao Y, Shang C, Xue Y, Ma J, Li Z, Liu Y (2012) MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SH3GL2 gene. PLoS ONE 7:e46010. https://doi.org/10.1371/journal.pone.0046010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yao Y, Xue Y, Ma J, Shang C, Wang P, Liu L, Liu W, Li Z, Qu S, Li Z, Liu Y (2014) MiR-330-mediated regulation of SH3GL2 expression enhances malignant behaviors of glioblastoma stem cells by activating ERK and PI3K/AKT signaling pathways. PLoS ONE 9:e95060. https://doi.org/10.1371/journal.pone.0095060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Feng L, Ma J, Ji H, Liu Y, Hu W (2017) miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep. https://doi.org/10.1042/BSR20170019

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wei CH, Wu G, Cai Q, Gao XC, Tong F, Zhou R, Zhang RG, Dong JH, Hu Y, Dong XR (2018) Correction to: MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol 11:6. https://doi.org/10.1186/s13045-017-0546-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Liu X, Shi H, Liu B, Li J, Liu Y, Yu B (2015) miR-330-3p controls cell proliferation by targeting early growth response 2 in non-small-cell lung cancer. Acta Biochim Biophys Sin 47:431–440. https://doi.org/10.1093/abbs/gmv032

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Kong R, Liu W, Guo Y, Feng J, Cheng C, Zhang X, Ma Y, Li S, Jiang J, Zhang J, Qiao Z, Qin J, Lu T, He X (2017) Inhibition of NOB1 by microRNA-330-5p overexpression represses cell growth of non-small cell lung cancer. Oncol Rep 38:2572–2580. https://doi.org/10.3892/or.2017.5927

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zhang GM, Wang MY, Liu YN, Zhu Y, Wan FN, Wei QY, Ye DW (2017) Functional variants in the low-density lipoprotein receptor gene are associated with clear cell renal cell carcinoma susceptibility. Carcinogenesis 38:1241–1248. https://doi.org/10.1093/carcin/bgx098

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Wang D, Li YJ, Ding N, Wang JY, Yang Q, Yang YR, Li YM, Fang XD, Zhao H (2015) Molecular networks and mechanisms of epithelial-mesenchymal transition regulated by miRNAs in the malignant melanoma cell line. Yi Chuan 37:673–682. https://doi.org/10.16288/j.yczz.15-022

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Xu W, Jiang H, Zhang F, Gao J, Hou J (2017) MicroRNA-330 inhibited cell proliferation and enhanced chemosensitivity to 5-fluorouracil in colorectal cancer by directly targeting thymidylate synthase. Oncol Lett 13:3387–3394. https://doi.org/10.3892/ol.2017.5895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yoo HI, Kim BK, Yoon SK (2016) MicroRNA-330-5p negatively regulates ITGA5 expression in human colorectal cancer. Oncol Rep 36:3023–3029. https://doi.org/10.3892/or.2016.5092

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Li Y, Zhu X, Xu W, Wang D, Yan J (2013) miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 431:560–565. https://doi.org/10.1016/j.bbrc.2013.01.016

    CAS  Article  PubMed  Google Scholar 

Download references



Author information



Corresponding author

Correspondence to Qingyan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

This research was approved by the ethical commitment of Liaocheng Dongchangfu People’s Hospital.

Informed consent

All participants in this study were informed and gave a written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Xie, Y., Wang, L. et al. LncRNA EWSAT1 upregulates CPEB4 via miR-330-5p to promote cervical cancer development. Mol Cell Biochem 471, 177–188 (2020). https://doi.org/10.1007/s11010-020-03778-8

Download citation


  • Long non‐coding RNA (lncRNA) ewing sarcoma associated transcript 1 (EWSAT1)
  • miR-330-5p
  • Cytoplasmic polyadenylation element-binding protein 4 (CPEB4)
  • Cervical cancer