Skip to main content
Log in

Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mycoplasma pneumoniae pneumonia (MPP) is the most common respiratory infection in young children and its incidence has increased worldwide. In this study, high expression of chemokine ligand 5 (CCL5) was observed in the serum of MPP patients, and its expression was positively correlated to DNA of M. pneumoniae (MP-DNA). In vitro, M. pneumoniae (MP) infection to A549 cells induced the expression of CCL5, chemokines receptor 4 (CCR4), nuclear factor-κB (NF-κB) nuclear protein, and phosphorylation of NF-κB-p65 (p-NF-κB-p65), whereas NF-κB cytoplasmic protein was decreased. On the contrary, treatment of hyperoside counteracted the induction of MP infection and promoted the proliferation of MP-infected A549 cells. Similarly, MP-induced IL-8 and TNF-α production was also markedly reduced by hyperoside. And CCR4 inhibitor AZD2098 had a better effect than hyperoside. In addition, CCL5 recombinant protein inhibited the effect of hyperoside to promote IL-8 and TNF-α production and CCR4 expression. These results indicated that CCL5 may be involved in the progression of MPP, and hyperoside was beneficial for MPP probably through CCL5–CCR4 interactions, which may provide a potential effective therapy for MPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foy HM (1993) Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients. Clin Infect Dis 17(Suppl 1(Supplement 1):S37

    Article  Google Scholar 

  2. Noah ND (1974) Mycoplasma pneumoniae Infection in the United Kingdom—1967-73. Br Med J 2(5918):544

    Article  CAS  Google Scholar 

  3. Foy HM, Kenny GE, Mcmahan R, Mansy AM, Grayston JT (1970) Mycoplasma pneumoniae pneumonia in an urban area. Five years of surveillance. JAMA 214(9):1666–1672

    Article  CAS  Google Scholar 

  4. Eaton MD, William VH, Gordon M (1945) Studies on the etiology of primary atypical pneumonia. J Exp Med 82(5):649–668

    Google Scholar 

  5. Defilippi A, Silvestri M, Tacchella A et al (2008) Epidemiology and clinical features of Mycoplasma pneumoniae infection in children. Respir Med 102(12):1762–1768

    Article  Google Scholar 

  6. Michelow IC, Olsen K, Lozano J et al (2004) Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 113(4):701

    Article  Google Scholar 

  7. Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17(4):697–728

    Article  CAS  Google Scholar 

  8. Lenglet A, Herrador Z, Magiorakos AP, Leitmeyer K, Coulombier D (2012) Surveillance status and recent data for Mycoplasma pneumoniae infections in the European Union and European Economic Area, January 2012. Euro surveillance 17(5):2–7

    Google Scholar 

  9. Diaz MH, Benitez AJ, Winchell JM (2015) Investigations of Mycoplasma pneumoniae infections in the United States: trends in molecular typing and macrolide resistance from 2006 to 2013. J Clin Microbiol 53(1):124–130

    Article  Google Scholar 

  10. Kim EK, Youn YS, Rhim JW, Shin MS, Kang JH, Lee KY (2015) Epidemiological comparison of three Mycoplasma pneumoniae pneumonia epidemics in a single hospital over 10 years. Korean J Pediatr 58(5):172–177

    Article  Google Scholar 

  11. Alam R (1997) Chemokines in allergic inflammation. J Allergy Clin Immunol 99(3):273–277

    Article  CAS  Google Scholar 

  12. Mccormack G, Moriarty D, O’Donoghue DP, Mccormick PA, Sheahan K, Baird AW (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 50(10):491–495

    Article  CAS  Google Scholar 

  13. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16(1):38–52

    Article  CAS  Google Scholar 

  14. Tran MT, Tellaetxe-Isusi M, Elner V, Strieter RM, Lausch RN, Oakes JE (1996) Proinflammatory cytokines induce RANTES and MCP-1 synthesis in human corneal keratocytes but not in corneal epithelial cells. Beta-chemokine synthesis in corneal cells. Investig Ophthalmol Vis Sci 37(6):987

    CAS  Google Scholar 

  15. Bouchelouche K, Alvarez S, Horn T, Nordling J, Bouchelouche P (2006) Human detrusor smooth muscle cells release interleukin-6, interleukin-8, and RANTES in response to proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha. Urology 67(1):214–219

    Article  Google Scholar 

  16. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Investig 107(1):7–11

    Article  CAS  Google Scholar 

  17. Hang CH, Shi JX, Li JS, Wu W, Yin HX (2005) Concomitant upregulation of nuclear factor-kB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurol India 53(3):312–317

    Article  Google Scholar 

  18. Yang J, Hooper WC, Phillips DJ, Talkington DF (2002) Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Infect Immun 70(7):3649

    Article  CAS  Google Scholar 

  19. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751

    CAS  PubMed  Google Scholar 

  20. Donatof. Romagnolo M, Selmin O (2012) Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 31(3):206–238

    Article  Google Scholar 

  21. Zou Y, Yanhua Lu A, Wei D (2004) Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52(16):5032–5039

    Article  CAS  Google Scholar 

  22. Kim SJ, Um JY, Lee JY (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am J Chin Med 39(01):171–181

    Article  CAS  Google Scholar 

  23. Ku SK, Zhou W, Lee W, Han MS, Na M, Bae JS (2015) Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation 38(2):784–799

    Article  CAS  Google Scholar 

  24. Ku SK, Kwak S, Kwon OJ, Bae JS (2014) Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation 37(5):1389–1400

    Article  CAS  Google Scholar 

  25. Hong JY, Kang B, Ahyoun K et al (2011) Development of a highly sensitive real-time one step RT-PCR combined complementary locked primer technology and conjugated minor groove binder probe. Virol J 8(1):330

    Article  CAS  Google Scholar 

  26. Starczynowski DT, Lockwood WW, Deléhouzée S et al (2011) TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer. J Clin Investig 121(10):4095–4105

    Article  CAS  Google Scholar 

  27. Ke SZ, Ni XY, Zhang YH, Wang YN, Wu B, Gao FG (2013) Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-κB pathway in lung cancer cells. Int J Oncol 42(4):1289–1296

    Article  CAS  Google Scholar 

  28. Yin M, Ren X, Zhang X et al (2014) Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 34(6):691–703

    Article  Google Scholar 

  29. Ping L, Uuml (2016) Inhibitory effects of hyperoside on lung cancer by inducing apoptosis and suppressing inflammatory response via caspase-3 and NF-κB signaling pathway. Biomed Pharmacother 82:216–225

    Article  Google Scholar 

  30. Erfani N, Nedaei Ahmadi AS, Ghayumi MA, Mojtahedi Z (2014) Genetic polymorphisms of CCL22 and CCR4 in patients with lung cancer. Iran J Med Sci 39(4):367–373

    PubMed  PubMed Central  Google Scholar 

  31. Puljiz I, Markotić A, Krajinović LC, Gužvinec M, Polašek O, Kuzman I (2012) Mycoplasma pneumoniae in adult community-acquired pneumonia increases matrix metalloproteinase-9 serum level and induces its gene expression in peripheral blood mononuclear cells. Med Sci Monit 18(8):CR500

    Article  CAS  Google Scholar 

  32. Marston BJ, Plouffe JF Jr et al (1997) Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance study in Ohio. The Community-Based Pneumonia Incidence Study Group. Arch Intern Med 157(15):1709–1718

    Article  CAS  Google Scholar 

  33. Porath A, Schlaeffer F, Lieberman D (1997) The epidemiology of community-acquired pneumonia among hospitalized adults. J Infect 34(1):41–48

    Article  CAS  Google Scholar 

  34. Palaniappan R, Singh S, Singh UP et al (2006) CCL5 modulates pneumococcal immunity and carriage. J Immunol 176(4):2346

    Article  CAS  Google Scholar 

  35. Coleman FT, Blahna MT, Kamata H et al (2017) The capacity of pneumococci to activate macrophage NF-kB determines necroptosis and pneumonia severity. J Infect Dis 216(4):425–435

    Article  Google Scholar 

  36. Shimizu T, Kida Y, Kuwano K (2005) A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J Immunol 175(7):4641

    Article  CAS  Google Scholar 

  37. Shao L, Cao L, Xiaoli LI et al (2016) Alterations of T-bet, GATA-3 and NF-κB transcription factors in lung tissue of asthmatic mice with Mycoplasma pneumonia infection. J Diagn Concepts Pract 15(2):137–141

    Google Scholar 

  38. Luo D, Duffy LB, Atkinson TP (2008) Activation of the human monocytoid cell line THP-1 for cytokine production by Mycoplasma pneumoniae. J Allergy Clin Immunol 121(2):S49–S49

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Important Weak Subject Construction Project of Pudong Health and Family Planning Commission of Shanghai (Grant No. PWZbr2017-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenWei Mao.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhao, Y., Lu, J. et al. Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Mol Cell Biochem 453, 179–186 (2019). https://doi.org/10.1007/s11010-018-3443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3443-4

Keywords

Navigation