Skip to main content

Advertisement

Log in

Supplementation of scopoletin improves insulin sensitivity by attenuating the derangements of insulin signaling through AMPK

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Scopoletin (SPL), a phenolic coumarin, is reported to regulate glucose metabolism. This study is initiated to substantiate the action of SPL on the regulation of insulin signaling in insulin resistant RIN5f cells and high fat, high fructose diet (HFFD)-fed rat model. Adult male Sprague Dawley rats were fed HFFD for 45 days to induce type 2 diabetes and then treated or untreated with SPL for the next 45 days. The levels of glucose, insulin, lipid profile, oxidative stress markers along with insulin signaling and AMPK protein expressions were examined at the end of 90 days. SPL lowered the levels of plasma glucose, insulin, and lipids which were increased in HFFD-fed rats. HFFD intake suppressed the activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; however, they were reversed by SPL supplementation, which reduced TBARS, lipid hydroperoxide, and protein carbonyl levels both in plasma and pancreas. SPL supplementation significantly activated insulin receptor substrate 1 (IRS1), phosphatidyl inositol 3-kinase (PI3K), and protein kinase B (Akt) phosphorylation which was suppressed in HFFD rats due to lipotoxicity. Moreover, SPL significantly activated AMPK and enhanced the association of IRS1-PI3K-Akt compared to the control group. The results revealed that SPL alleviated T2D induced by HFFD by escalating the antioxidant levels and through insulin signaling regulation. We conclude that SPL can improve insulin signaling through AMPK, thereby confirming the role of SPL as an AMPK activator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

T2D:

Type 2 diabetes

HFFD:

High fat, high fructose diet

AMPK:

5′-AMP activated protein kinase

SPL:

Scopoletin

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside

TC:

Total cholesterol

TG:

Triglycerides

HDL-C:

High density lipoprotein cholesterol

LDL-C:

Low density lipoprotein cholesterol

VLDL-C:

Very low density lipoprotein cholesterol

TBARS:

Thiobarbituric acid reactive substances

LHP:

Lipid hydroperoxides

PC:

Protein carbonyl

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

IRS:

Insulin receptor substrate

PI3K:

Phosphatidyl inositol 3 kinase

Akt/PKB:

Protein kinase B

References

  1. Carpinella MC, Ferrayoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem 53:2922–2927. https://doi.org/10.1021/jf0482461

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto S, Mizutani M, Sakata K, Shimizu B (2012) Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam. Phytochemistry 74:49–57. https://doi.org/10.1016/j.phytochem.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  3. Shaw CY, Chen CH, Hsu CC, Chen CC, Tsai YC (2003) Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother Res 17:823–825. https://doi.org/10.1002/ptr.1170

    Article  CAS  PubMed  Google Scholar 

  4. Ojewole JA, Adesina SK (1983) Mechanism of the hypotensive effect of scopoletin isolated from the fruit of Tetrapleura tetraptera. Planta Med 49:46–50

    Article  CAS  PubMed  Google Scholar 

  5. Chang TN, Deng JS, Chang YC, Lee CY, Jung-Chun L, Lee MM, Peng WH, Huang SS, Huang GJ (2012) Ameliorative effects of scopoletin from Crossostephium chinensis against inflammation pain and its mechanisms in mice. Evid Based Complement Altern Med 2012:595603. https://doi.org/10.1155/2012/595603

    Article  Google Scholar 

  6. Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS (2015) Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules 20:2786–2801. https://doi.org/10.3390/molecules20022786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandukhail SU, Aziz N, Gilani AH (2010) Studies on antidyslipidemic effects of Morinda citrifolia (Noni) fruit, leaves and root extracts. Lipids Health Dis 9:88. https://doi.org/10.1186/1476-511X-9-88

    Article  PubMed  PubMed Central  Google Scholar 

  8. Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, Okuyama T (1995) Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull (Tokyo) 43:1385–1387

    Article  CAS  Google Scholar 

  9. Ham JR, Lee HI, Choi RY, Sim MO, Choi MS, Kwon EY, Yun KW, Kim MY, Lee MK (2016) Anti-obesity and anti-hepatosteatosis effects of dietary scopoletin in high-fat diet fed mice. J Funct Foods 25:433–446. https://doi.org/10.1016/j.jff.2016.06.026

    Article  CAS  Google Scholar 

  10. Vinayagamoorthi R, Bobby Z, Sridhar MG (2008) Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signaling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance. J Endocrinol 197:287–296. https://doi.org/10.1677/JOE-08-0061

    Article  CAS  PubMed  Google Scholar 

  11. Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC (2009) Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 58:906–916. https://doi.org/10.2337/db08-1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salih SM, Nallasamy P, Muniyandi P, Periyasami V, Venkatraman AC (2009) Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J Diabetes 1:278–287. https://doi.org/10.1111/j.1753-0407.2009.00045.x

    Article  CAS  Google Scholar 

  13. Kannappan S, Palanisamy N, Anuradha CV (2010) Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur J Pharmacol 645:177–184. https://doi.org/10.1016/j.ejphar.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  14. Crescenzo R, Bianco F, Coppola P, Mazzoli A, Tussellino M, Carotenuto R, Liverini G, Iossa S (2014) Fructose supplementation worsens the deleterious effects of short-term high-fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp Physiol 99:1203–1213. https://doi.org/10.1113/expphysiol.2014.079632

    Article  CAS  PubMed  Google Scholar 

  15. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32(Suppl 4):S7–S12. https://doi.org/10.1038/ijo.2008.116

    Article  CAS  Google Scholar 

  16. Son Y, Nam JS, Jang MK, Jung IA, Cho SI, Jung MH (2013) Antiobesity activity of Vigna nakashimae extract in high-fat diet-induced obesity. Biosci Biotechnol Biochem 77:332–338. https://doi.org/10.1271/bbb.120755

    Article  CAS  PubMed  Google Scholar 

  17. Buhl ES, Jessen N, Pold R, Ledet T, Flyvbjerg A, Pedersen SB, Pedersen O, Schmitz O, Lund S (2002) Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51:2199–2206

    Article  CAS  PubMed  Google Scholar 

  18. Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW (2002) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51:2886–2894

    Article  CAS  PubMed  Google Scholar 

  19. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078. https://doi.org/10.1152/physrev.00011.2008

    Article  CAS  PubMed  Google Scholar 

  20. Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523. https://doi.org/10.1002/msj.20212

    Article  PubMed  Google Scholar 

  21. Jung IR, Choi SE, Jung JG, Lee SA, Han SJ, Kim HJ, Kim DJ, Lee KW, Kang Y (2015) Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol Cell Endocrinol 407:74–84. https://doi.org/10.1016/j.mce.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  23. Panda S, Kar A (2006) Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelos leaves in hyperthyroid rats. Phytother Res 20:1103–1105. https://doi.org/10.1002/ptr.2014

    Article  CAS  PubMed  Google Scholar 

  24. Gaidhu MP, Frontini A, Hung S, Pistor K, Cinti S, Ceddia RB (2011) Chronic AMP-kinase activation with AICAR reduces adiposity by remodeling adipocyte metabolism and increasing leptin sensitivity. J Lipid Res 52:1702–1711. https://doi.org/10.1194/jlr.M015354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  26. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410. https://doi.org/10.1210/jcem.85.7.6661

    Article  CAS  PubMed  Google Scholar 

  27. Shalam MD, Harish MS, Farhana SA (2006) Prevention of dexamethasone- and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J Pharmacol 38:419–422. https://doi.org/10.4103/0253-7613.28209

    Article  Google Scholar 

  28. Rao P, Pattabiraman TN (1990) Further studies on the mechanism of phenol-sulfuric acid reaction with furaldehyde derivatives. Anal Biochem 189:178–181. https://doi.org/10.1016/0003-2697(90)90103-G

    Article  CAS  PubMed  Google Scholar 

  29. Johnson RN, Metcalf PA, Baker JR (1983) Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127:87–95

    Article  CAS  PubMed  Google Scholar 

  30. Zlatkis A, Zak B, Boyle AJ (1953) A new method for the direct determination of serum cholesterol. J Lab Clin Med 41:486–492

    CAS  PubMed  Google Scholar 

  31. Foster LB, Dunn RT (1973) Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method. Clin Chem 19:338–340

    CAS  PubMed  Google Scholar 

  32. Niehaus WG Jr, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130. https://doi.org/10.1111/j.1432-1033.1968.tb00428.x

    Article  CAS  PubMed  Google Scholar 

  33. Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389. https://doi.org/10.1016/0003-2697(92)90122-N

    Article  CAS  PubMed  Google Scholar 

  34. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-H

    Article  CAS  PubMed  Google Scholar 

  35. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  36. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  37. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  PubMed  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  39. Kalpana K, Priyadarshini E, Sreeja S, Jagan K, Anuradha CV (2018) Scopoletin intervention in pancreatic endoplasmic reticulum stress induced by lipotoxicity. Cell Stress Chaperones. https://doi.org/10.1007/s12192-018-0893-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee HI, Yun KW, Seo KI, Kim MJ, Lee MK (2014) Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK-SREBP pathway in diet-induced obese mice. Metabolism 63:593–601. https://doi.org/10.1016/j.metabol.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Lee HI, Lee MK (2015) Coordinated regulation of scopoletin at adipose tissue-liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol Lett 237:210–218. https://doi.org/10.1016/j.toxlet.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  42. Lee HI, Lee MK (2015) Effect of scopoletin supplementation on insulin resistance and antioxidant defense system in chronic alcohol fed rats. J Korean Soc Food Sci Nutr 44:173–181. https://doi.org/10.3746/jkfn.2015.44.2.173

    Article  CAS  Google Scholar 

  43. Yogalakshmi B, Bhuvaneswari S, Sreeja S, Anuradha CV (2014) Grape seed proanthocyanidins and metformin act by different mechanisms to promote insulin signaling in rats fed high calorie diet. J Cell Commun Signal 8:13–22. https://doi.org/10.1007/s12079-013-0210-x

    Article  PubMed  Google Scholar 

  44. Kalivarathan J, Chandrasekaran SP, Kalaivanan K, Ramachandran V, Venkatraman AC (2017) Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed Pharmacother 89:323–331. https://doi.org/10.1016/j.biopha.2017.01.162

    Article  CAS  PubMed  Google Scholar 

  45. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:863–870

    Article  CAS  PubMed  Google Scholar 

  46. Choi SE, Kim HE, Shin HC, Jang HJ, Lee KW, Kim Y, Kang SS, Chun J, Kang Y (2007) Involvement of Ca2+-mediated apoptotic signals in palmitate-induced MIN6N8a beta cell death. Mol Cell Endocrinol 272:50–62. https://doi.org/10.1016/j.mce.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  47. Zhang WY, Lee JJ, Kim Y, Kim IS, Park JS, Myung CS (2010) Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res 42:930–935. https://doi.org/10.1055/s-0030-1265219

    Article  CAS  PubMed  Google Scholar 

  48. Park EJ, Lee AY, Park S, Kim JH, Cho MH (2014) Multiple pathways are involved in palmitic acid-induced toxicity. Food Chem Toxicol 67:26–34. https://doi.org/10.1016/j.fct.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  49. Larsen AK, Moller MT, Blankson H, Samari HR, Holden L, Seglen PO (2002) Naringin-sensitive phosphorylation of plectin, a cytoskeletal cross-linking protein, in isolated rat hepatocytes. J Biol Chem 277:34826–34835. https://doi.org/10.1074/jbc.M205028200

    Article  CAS  PubMed  Google Scholar 

  50. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25:9554–9575. https://doi.org/10.1128/MCB.25.21.9554-9575.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Longnus SL, Segalen C, Giudicelli J, Sajan MP, Farese RV, Van Obberghen E (2005) Insulin signalling downstream of protein kinase B is potentiated by 5′AMP-activated protein kinase in rat hearts in vivo. Diabetologia 48:2591–2601. https://doi.org/10.1007/s00125-005-0016-3

    Article  CAS  PubMed  Google Scholar 

  52. Ju JS, Gitcho MA, Casmaer CA, Patil PB, Han DG, Spencer SA, Fisher JS (2007) Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase. Am J Physiol Cell Physiol 292:C564–C572. https://doi.org/10.1152/ajpcell.00269.2006

    Article  CAS  PubMed  Google Scholar 

  53. Chopra I, Li HF, Wang H, Webster KA (2012) Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55:783–794. https://doi.org/10.1007/s00125-011-2407-y

    Article  CAS  PubMed  Google Scholar 

  54. Zhao P, Dou Y, Chen L, Li L, Wei Z, Yu J, Wu X, Dai Y, Xia Y (2015) SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria. Fitoterapia 104:31–40. https://doi.org/10.1016/j.fitote.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  55. Vincent MF, Bontemps F, Van den Berghe G (1996) Substrate cycling between 5-amino-4-imidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes. Biochem Pharmacol 52:999–1006. https://doi.org/10.1016/0006-2952(96)00413-3

    Article  CAS  PubMed  Google Scholar 

  56. Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7:512–518. https://doi.org/10.1038/nchembio.610

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Min Q, Ouyang C, Lee J, He C, Zou MH, Xie Z (2014) AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim Biophys Acta 1842:1844–1854. https://doi.org/10.1016/j.bbadis.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Radika MK, Anuradha CV (2015) Activation of insulin signaling and energy sensing network by AICAR, an AMPK activator in insulin resistant rat tissues. J Basic Clin Physiol Pharmacol 26:563–574. https://doi.org/10.1515/jbcpp-2014-0122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology, Women Scientists Scheme-A, New Delhi, India under “Disha programme for women in Science” (SR/WOS-A/LS-1170/2014). The authors wish to thank DST-FIST and UGC-SAP for the facilities developed in the Department of Biochemistry and Biotechnology, Annamalai University for executing the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carani Venkatraman Anuradha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Experimental procedures were approved by the Institutional Animal Ethics Committee (IAEC), Annamalai University, and conducted according to the guidelines by the committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) (Proposal No. 1091).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana, K., Sathiya Priya, C., Dipti, N. et al. Supplementation of scopoletin improves insulin sensitivity by attenuating the derangements of insulin signaling through AMPK. Mol Cell Biochem 453, 65–78 (2019). https://doi.org/10.1007/s11010-018-3432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3432-7

Keywords

Navigation