Skip to main content
Log in

Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aims to explore the effect of epigallocatechin gallate (EGCG) on blood lipids, liver lipids, and cholesterol synthesis in hyperlipidemic rats. SREBP-2 transgenic rats were used to investigate the transcriptional level of SREBP-2 regulated by SIRT-1/FOXO1 and the molecular mechanism of rate-limiting enzyme HMGCR that affects cholesterol synthesis. Rat models of hyperlipidemia were established and administered EGCG. Cholesterol synthesis was observed. Enzyme linked immunosorbent assay was used to determine serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), free fatty acid (FFA), superoxide dismutase (SOD), malondialdehyde (MDA), and T-AOC contents. Hematoxylin-eosin staining and oil red O staining were utilized to observe the histological changes in the liver. Biochemical method was applied to measure serum ALT and AST changes. Western blot assay and qRT-PCR were employed to detect the changes in SIRT1/FOXO1 pathway-related proteins, cholesterol synthesis-related genes, and SREBP-2. EGCG 50 mg/kg could obviously decrease the liver weight and liver coefficient, reduce serum TG, TC, LDL-C, and FFA levels (P < 0.05), and increase serum HDL-C levels in hyperlipidemic rats. EGCG could diminish hyperlipidemia-induced liver injury and reduce serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Oil red O staining results demonstrated that the number of red lipid droplets in hepatocytes reduced to varying degrees, especially high-dose EGCG. EGCG remarkably diminished MDA content in the liver with hypercholesterolemia and increased T-AOC and SOD activity. In the model group, SIRT1 expression increased, and FOXO1 expression decreased. EGCG activated SIRT1 and increased FOXO1 expression, whose expression trend was consistent with the fenofibrate group. HMGCR, FDPS, SS, and ABCA1 expression increased, and ACAT2 expression noticeably reduced in SREBP-2+/+ transgenic rats. EGCG could reverse the expression trend of each gene. Simultaneously, EGCG increased FOXO1 expression, and decrease SREBP-2 expression; however, no significant changes in these expression were found in SREBP-2−/− rats. EGCG can alleviate liver injury and oxidative stress in hyperlipidemic rats. EGCG can activate SIRT1, activate FOXO1 protein, regulate SREBP-2 protein, and inhibit hepatic cholesterol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, Zhang D, Graham MJ, Unterman TG, Shulman GI, Sztalryd C, Bennett MJ, Ahima RS, Birnbaum MJ, Lazar MA (2012) Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med 18(6):934–942. https://doi.org/10.1038/nm.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  3. Zafar A, Al-Khamis FA, Al-Bakr AI, Alsulaiman AA, Msmar AH (2016) Risk factors and subtypes of acute ischemic stroke. A study at King Fahd Hospital of the University. Neurosciences 21(3):246–251. https://doi.org/10.17712/nsj.2016.3.20150731

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Primary Care 40(1):195–211. https://doi.org/10.1016/j.pop.2012.11.003

    Article  PubMed  Google Scholar 

  5. Yang EJ, Lee J, Lee SY, Kim EK, Moon YM, Jung YO, Park SH, Cho ML (2014) EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1alpha with Th17/Treg control. PLoS ONE 9(2):e86062. https://doi.org/10.1371/journal.pone.0086062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276. https://doi.org/10.1186/1471-2407-10-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24(1):61–74. https://doi.org/10.1080/10717544.2016.1228718

    Article  CAS  PubMed  Google Scholar 

  9. Yamabe N, Yokozawa T, Oya T, Kim M (2006) Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther 319(1):228–236. https://doi.org/10.1124/jpet.106.107029

    Article  CAS  PubMed  Google Scholar 

  10. Kaviarasan S, Sundarapandiyan R, Anuradha CV (2008) Epigallocatechin gallate, a green tea phytochemical, attenuates alcohol-induced hepatic protein and lipid damage. Toxicol Mech Methods 18(8):645–652. https://doi.org/10.1080/15376510701884985

    Article  CAS  PubMed  Google Scholar 

  11. Itoh T, Tabuchi M, Mizuguchi N, Imano M, Tsubaki M, Nishida S, Hashimoto S, Matsuo K, Nakayama T, Ito A, Munakata H, Satou T (2013) Neuroprotective effect of (-)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm 120(5):767–783. https://doi.org/10.1007/s00702-012-0918-4

    Article  CAS  PubMed  Google Scholar 

  12. Funamoto M, Masumoto H, Takaori K, Taki T, Setozaki S, Yamazaki K, Minakata K, Ikeda T, Hyon SH, Sakata R (2016) Green tea polyphenol prevents diabetic rats from acute kidney injury after cardiopulmonary bypass. Ann Thorac Surg 101(4):1507–1513. https://doi.org/10.1016/j.athoracsur.2015.09.080

    Article  PubMed  Google Scholar 

  13. Miltonprabu S, Thangapandiyan S (2015) Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol 29:321–335. https://doi.org/10.1016/j.jtemb.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  14. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS (2008) The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138(9):1677–1683

    Article  CAS  Google Scholar 

  15. Haskins JW, Zhang S, Means RE, Kelleher JK, Cline GW, Canfran-Duque A, Suarez Y, Stern DF (2015) Neuregulin-activated ERBB4 induces the SREBP-2 cholesterol biosynthetic pathway and increases low-density lipoprotein uptake. Sci Signal 8(401):ra111. https://doi.org/10.1126/scisignal.aac5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Song Y, Zhao M, Guo Y, Yu C, Chen W, Shao S, Xu C, Zhou X, Zhao L, Zhang Z, Bo T, Xia Y, Proud CG, Wang X, Wang L, Zhao J, Gao L (2017) A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP-2. Hepatology 66(2):481–497. https://doi.org/10.1002/hep.29206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuhn DJ, Burns AC, Kazi A, Dou QP (2004) Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochim et Biophys Acta 1682(1–3):1–10. https://doi.org/10.1016/j.bbalip.2003.12.006

    Article  CAS  Google Scholar 

  18. Klotz LO, Sanchez-Ramos C, Prieto-Arroyo I, Urbanek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72. https://doi.org/10.1016/j.redox.2015.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh KJ, Han HS, Kim MJ, Koo SH (2013) CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep 46(12):567–574

    Article  CAS  Google Scholar 

  20. Wu Y, Liu X, Zhou Q, Huang C, Meng X, Xu F, Li J (2015) Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol 289(2):163–176. https://doi.org/10.1016/j.taap.2015.09.028

    Article  CAS  PubMed  Google Scholar 

  21. Ren PL, Fan XJ, Yang XL, Liu MJ, Liu J, Huang JJ (2014) SIRT1 promote GTM cell DSBs repair and resist cellular senescence. J Sichuan Univ Med Sci Ed 45(4):572–577

    CAS  Google Scholar 

  22. Guo X, Williams JG, Schug TT, Li X (2010) DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 285(17):13223–13232. https://doi.org/10.1074/jbc.M110.102574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li K, Zhang J, Yu J, Liu B, Guo Y, Deng J, Chen S, Wang C, Guo F (2015) MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J Biol Chem 290(13):8185–8195. https://doi.org/10.1074/jbc.M114.633990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi M, Ishibashi S (2013) Acquired hypertriglyceridemia. Nihon Rinsho Jpn J Clin Med 71(9):1597–1601

    Google Scholar 

  25. Nimkuntod P, Tongdee P (2015) Association between subclinical atherosclerosis among hyperlipidemia and healthy subjects. J Med Assoc Thailand 98(Suppl 4):S51–57

    Google Scholar 

  26. Navar-Boggan AM, Peterson ED, D’Agostino RB, Sr., Neely B, Sniderman AD, Pencina MJ (2015) Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 131(5):451–458. https://doi.org/10.1161/CIRCULATIONAHA.114.012477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dyson J, Day C (2014) Treatment of non-alcoholic fatty liver disease. Dig Dis 32(5):597–604. https://doi.org/10.1159/000360511

    Article  PubMed  Google Scholar 

  28. Ou HC, Song TY, Yeh YC, Huang CY, Yang SF, Chiu TH, Tsai KL, Chen KL, Wu YJ, Tsai CS, Chang LY, Kuo WW, Lee SD (2010) EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physio 108(6):1745–1756. https://doi.org/10.1152/japplphysiol.00879.2009

    Article  CAS  Google Scholar 

  29. Intra J, Kuo SM (2007) Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells. Chem-Biol Interact 169(2):91–99. https://doi.org/10.1016/j.cbi.2007.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou P, Yu JF, Zhao CG, Sui FX, Teng X, Wu YB (2013) Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy. Mol Med Rep 7(4):1096–1102. https://doi.org/10.3892/mmr.2013.1296

    Article  CAS  PubMed  Google Scholar 

  31. Nakagawa T, Yokozawa T, Sano M, Takeuchi S, Kim M, Minamoto S (2004) Activity of (-)-epigallocatechin 3-O-gallate against oxidative stress in rats with adenine-induced renal failure. J Agric Food Chem 52(7):2103–2107. https://doi.org/10.1021/jf030258j

    Article  CAS  PubMed  Google Scholar 

  32. Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, Hara Y, Isemura M (2004) Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. Planta Med 70(11):1100–1102. https://doi.org/10.1055/s-2004-832659

    Article  CAS  PubMed  Google Scholar 

  33. Lee SJ, Sekimoto T, Yamashita E, Nagoshi E, Nakagawa A, Imamoto N, Yoshimura M, Sakai H, Chong KT, Tsukihara T, Yoneda Y (2003) The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science 302(5650):1571–1575. https://doi.org/10.1126/science.1088372

    Article  CAS  PubMed  Google Scholar 

  34. Sato R (2009) SREBPs: protein interaction and SREBPs. FEBS J 276(3):622–627. https://doi.org/10.1111/j.1742-4658.2008.06807.x

    Article  CAS  PubMed  Google Scholar 

  35. Tamasawa N (2010) Disorder of cholesterol metabolism: regulation of intracellular cholesterol and membrane trafficking. Rinsho Byori Jpn J Clin Pathol 58(12):1203–1210

    CAS  Google Scholar 

  36. Singh AB, Kan CF, Dong B, Liu J (2016) SREBP2 activation induces hepatic long-chain Acyl-CoA synthetase 1 (ACSL1) expression in vivo and in vitro through a sterol regulatory element (SRE) motif of the ACSL1 C-promoter. J Biol Chem 291(10):5373–5384. https://doi.org/10.1074/jbc.M115.696872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86(11):839–848. https://doi.org/10.1016/j.biochi.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  38. Duncan MT, DeLuca TA, Kuo HY, Yi M, Mrksich M, Miller WM (2016) SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation. Exp Cell Res 344(1):40–52. https://doi.org/10.1016/j.yexcr.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chini CC, Espindola-Netto JM, Mondal G, Guerrico AM, Nin V, Escande C, Sola-Penna M, Zhang JS, Billadeau DD, Chini EN (2016) SIRT1-activating compounds (STAC) negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway. Clin Cancer Res 22(10):2496–2507. https://doi.org/10.1158/1078-0432.CCR-15-1760

    Article  CAS  PubMed  Google Scholar 

  40. Yan H, Wu A (2018) FOXO1 is crucial in glioblastoma cell tumorigenesis and regulates the expression of SIRT1 to suppress senescence in the brain. Mol Med Rep 17(2):2535–2542. https://doi.org/10.3892/mmr.2017.8146

    Article  PubMed  Google Scholar 

  41. Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin P, Leutz A, Berruyer C, Sieweke MH (2017) SIRT1 regulates macrophage self-renewal. EMBO J 36(16):2353–2372. https://doi.org/10.15252/embj.201695737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng X, Zhang W, I OS, Williams JB, Dong Q, Park EA, Raghow R, Unterman TG, Elam MB (2012) FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c. J Biol Chem 287(24):20132–20143. https://doi.org/10.1074/jbc.M112.347211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R, Rhodes CJ (2011) FoxO feedback control of basal IRS-2 expression in pancreatic beta-cells is distinct from that in hepatocytes. Diabetes 60(11):2883–2891. https://doi.org/10.2337/db11-0340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants from National Natural Science Foundation of China (No. 81200318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuodong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, S. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Mol Cell Biochem 448, 175–185 (2018). https://doi.org/10.1007/s11010-018-3324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3324-x

Keywords

Navigation