Betaine promotes lipid accumulation in adipogenic-differentiated skeletal muscle cells through ERK/PPARγ signalling pathway

  • Weiche Wu
  • Sisi Wang
  • Ziye Xu
  • Xinxia Wang
  • Jie Feng
  • Tizhong Shan
  • Yizhen Wang


Betaine, a neutral zwitterionic compound, could regulate intramuscular fat (IMF) deposition and meat quality. However, the efficacy is controversial. Moreover, the regulatory mechanism of betaine on lipid metabolism in skeletal muscle cells remains unclear. Therefore, in this study, we examined the effects and regulatory mechanism of betaine on lipid accumulation in adipogenic-differentiated C2C12 cells. We found that adipogenic-induced C2C12 cells treated with 10 mM betaine for 24 and 48 h had more lipid accumulation than the control group. Real-time PCR and Western blot results revealed that betaine treatment did not alter the expression of lipolysis and lipid oxidation-related genes, but dramatically increased the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes such as fatty acid binding protein 4 (aP2), fatty acid synthase (FAS) and lipoprteinlipase (LPL). Furthermore, betaine combined with PPARγ inhibitor GW9662 treatment showed that betaine elevated C2C12 lipid accumulation through upregulation of PPARγ. Mechanistically, we found that betaine promoted PPARγ expression and lipid accumulation through inhibition of extracellular regulated protein kinases1/2 (ERK1/2) signalling pathway. These results demonstrate that betaine acts through ERK1/2-PPARγ signalling pathway to regulate lipid metabolism in adipogenic-differentiated skeletal muscle cells, which could provide some useful information for controlling muscle lipid accumulation by manipulating ERK1/2 and PPARγ signalling pathway.


Betaine C2C12 Intramuscular fat PPARγ ERK1/2 



The project was financially supported by the National Basic Research Program of the Ministry of Science and Technology of China (Grant No. 2012CB124705), the Fundamental Research Funds for the Central Universities to TZ Shan and the Special Fund for Cultivation and Breeding of New Transgenic Organism of Ministry of Agriculture of China (Grant No. 2014ZX0800949B).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11010_2018_3299_MOESM1_ESM.pdf (429 kb)
Supplementary material 1 (PDF 428 KB)


  1. 1.
    Zeisel SH, Mar MH, Howe JC, Holden JM (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133(5):1302–1307PubMedGoogle Scholar
  2. 2.
    Jia YM, Song HG, Gao GC, Cai DM, Yang XJ, Zhao RQ (2015) Maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets. J Agric Food Chem 63(46):10152–10160CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang MM, Zhang H, Li HX, Lai FR, Li XF, Tang YG, Min T, Wu H (2016) Antioxidant mechanism of betaine without free radical scavenging ability. J Agric Food Chem 64(42):7921–7930CrossRefGoogle Scholar
  4. 4.
    Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(3):539–549PubMedGoogle Scholar
  5. 5.
    Zhang F, Warskulat U, Wettstein M, Haussinger D (1996) Identification of betaine as an osmolyte in rat liver macrophages (Kupffer cells). Gastroenterology 110(5):1543–1552CrossRefPubMedGoogle Scholar
  6. 6.
    Natalello A, Liu J, Ami D, Doglia SM, de Marco A (2009) The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins 75(2):509–517. CrossRefPubMedGoogle Scholar
  7. 7.
    Wang LJ, Zhang HW, Zhou JY, Liu Y, Yang Y, Chen XL, Zhu CH, Zheng RD, Ling WH, Zhu HL (2014) Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 25(3):329–336. CrossRefPubMedGoogle Scholar
  8. 8.
    Zhou XH, Chen JQ, Chen J, Wu WC, Wang XX, Wang YZ (2015) The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase alpha 1 subunit. J Nutr Biochem 26(12):1678–1684. CrossRefPubMedGoogle Scholar
  9. 9.
    DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 88(4):787–835, ix. CrossRefPubMedGoogle Scholar
  10. 10.
    Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 49(4):467–472. doi: CrossRefPubMedGoogle Scholar
  11. 11.
    Wood JD, Enser M, Fisher AV, Nute GR, Richardson RI, Sheard PR (1999) Manipulating meat quality and composition. Proc Nutr Soc 58(2):363–370CrossRefPubMedGoogle Scholar
  12. 12.
    Fernandez X, Monin G, Talmant A, Mourot J, Lebret B (1999) Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci 53(1):59–65CrossRefPubMedGoogle Scholar
  13. 13.
    Lee EC, Maresh CM, Kraemer WJ, Yamamoto LM, Hatfield DL, Bailey BL, Armstrong LE, Volek JS, McDermott BP, Craig SA (2010) Ergogenic effects of betaine supplementation on strength and power performance. J Int Soc Sports Nutr 7:27. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trepanowski JF, Farney TM, McCarthy CG, Schilling BK, Craig SA, Bloomer RJ (2011) The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res 25(12):3461–3471. CrossRefPubMedGoogle Scholar
  15. 15.
    Pryor JL, Craig SAS, Swensen T (2012) Effect of betaine supplementation on cycling sprint performance. J Int Soc Sports Nutr 9:12CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang Q-C, Han X-Y, Xu Z-R, Yang X-Y, Chen T, Zheng X-T (2009) Betaine suppresses carnitine palmitoyltransferase I in skeletal muscle but not in liver of finishing pigs. Livest Sci 126(1–3):130–135. CrossRefGoogle Scholar
  17. 17.
    Martins JM, Neves JA, Freitas A, Tirapicos JL (2012) Effect of long-term betaine supplementation on chemical and physical characteristics of three muscles from the Alentejano pig. J Sci Food Agric 92(10):2122–2127. CrossRefPubMedGoogle Scholar
  18. 18.
    Albuquerque A, Neves JA, Redondeiro M, Laranjo M, Felix MR, Freitas A, Tirapicos JL, Martins JM (2017) Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed. Meat Sci 124:25–33CrossRefPubMedGoogle Scholar
  19. 19.
    Alirezaei M, Reza Gheisari H, Reza Ranjbar V, Hajibemani A (2012) Betaine: a promising antioxidant agent for enhancement of broiler meat quality. Br Poult Sci 53(5):699–707. CrossRefPubMedGoogle Scholar
  20. 20.
    Overland M, Rorvik KA, Skrede A (1999) Effect of trimethylamine oxide and betaine in swine diets on growth performance, carcass characteristics, nutrient digestibility, and sensory quality of pork. J Anim Sci 77(8):2143–2153CrossRefPubMedGoogle Scholar
  21. 21.
    Haydon K, Campbell R, Prince T (1995) Effect of dietary betaine additions and amino: calorie ratio on performance and carcass traits of finishing pigs. J Anim Sci 73(Suppl 1):83Google Scholar
  22. 22.
    Huang QC, Xu ZR, Han XY, Li WF (2006) Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livest Sci 105(1–3):78–85CrossRefGoogle Scholar
  23. 23.
    Wu W, Feng J, Jiang D, Zhou X, Jiang Q, Cai M, Wang X, Shan T, Wang Y (2017) AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci Rep 7:41606. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu W, Xu Z, Zhang L, Liu J, Feng J, Wang X, Shan T, Wang Y (2017) Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet. J Physiol Biochem. Google Scholar
  25. 25.
    Wu W, Feng J, Jiang D, Zhou X, Jiang Q, Cai M, Wang X, Shan T, Wang Y (2017) AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N(6)-methyladenosine. Sci Rep 7:41606. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shan T, Zhang P, Bi P, Kuang S (2015) Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles. J Cell Physiol 230(5):1033–1041. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wu W, Sun Y, Zhao C, Zhao C, Chen X, Wang G, Pang W, Yang G (2016) Lipogenesis in myoblasts and its regulation of CTRP6 by AdipoR1/Erk/PPARgamma signaling pathway. Acta Biochim Biophys Sin 48(6):509–519. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lu S, Zhang Y, Zhong S, Gao F, Chen Y, Li W, Zheng F, Shi G (2016) N-n-butyl haloperidol iodide protects against hypoxia/reoxygenation injury in cardiac microvascular endothelial cells by regulating the ROS/MAPK/Egr-1 pathway. Front Pharmacol 7:520. CrossRefPubMedGoogle Scholar
  29. 29.
    Lawrence BV, Schinckel AP, Adeola O, Cera K (2002) Impact of betaine on pig finishing performance and carcass composition. J Anim Sci 80(2):475–482CrossRefPubMedGoogle Scholar
  30. 30.
    Li S, Wang H, Wang X, Wang Y, Feng J (2017) Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig. J Anim Sci Biotechnol 8:72. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727CrossRefPubMedGoogle Scholar
  32. 32.
    Ding ST, Schinckel AP, Weber TE, Mersmann HJ (2000) Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. J Anim Sci 78(8):2127–2134CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi N, Goto T, Taimatsu A, Egawa K, Katoh S, Kusudo T, Sakamoto T, Ohyane C, Lee JY, Kim YI, Uemura T, Hirai S, Kawada T (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR gamma activation. Biochem Biophys Res Commun 390(4):1372–1376CrossRefPubMedGoogle Scholar
  34. 34.
    van Eijk M, Aten J, Bijl N, Ottenhoff R, van Roomen CP, Dubbelhuis PF, Seeman I, Ghauharali-van der Vlugt K, Overkleeft HS, Arbeeny C, Groen AK, Aerts JM (2009) Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS ONE 4(3):e4723. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leyvraz C, Suter M, Verdumo C, Calmes JM, Paroz A, Darimont C, Gaillard RC, Pralong FP, Giusti V (2010) Selective effects of PPAR gamma agonists and antagonists on human pre-adipocyte differentiation. Diabetes Obes Metab 12(3):195–203CrossRefPubMedGoogle Scholar
  36. 36.
    Bost F, Aouadi M, Caron L, Binetruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87(1):51–56. CrossRefPubMedGoogle Scholar
  37. 37.
    Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prevot V (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19(2):293–301CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hauner H, Rohrig K, Petruschke T (1995) Effects of epidermal growth-factor (Egf), platelet-derived growth-factor (Pdgf) and fibroblast growth-factor (Fgf) on human adipocyte development and function. Eur J Clin Invest 25(2):90–96CrossRefPubMedGoogle Scholar
  39. 39.
    Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I (2013) Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J Transl Med 11:174. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weiche Wu
    • 1
    • 2
    • 3
  • Sisi Wang
    • 1
    • 2
    • 3
  • Ziye Xu
    • 1
    • 2
    • 3
  • Xinxia Wang
    • 1
    • 2
    • 3
  • Jie Feng
    • 1
    • 2
    • 3
  • Tizhong Shan
    • 1
    • 2
    • 3
  • Yizhen Wang
    • 1
    • 2
    • 3
  1. 1.College of Animal ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Animal Nutrition & Feed SciencesMinistry of AgricultureHangzhouPeople’s Republic of China
  3. 3.Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouPeople’s Republic of China

Personalised recommendations