Immunological impact of Wharton’s Jelly mesenchymal stromal cells and natural killer cell co-culture

  • Mehdi Najar
  • Mohammad Fayyad-Kazan
  • Nathalie Meuleman
  • Dominique Bron
  • Hussein Fayyad-Kazan
  • Laurence Lagneaux


Due to their easier isolation, multilineage potential, and immunomodulatory capacity, Wharton’s Jelly-derived mesenchymal stromal cells (WJ-MSCs) exhibit promising efficacy in the field of regenerative medicine and immunotherapy. Characterization of WJ-MSCs–natural killer (NK) cells crosstalk is required for ameliorating the medicinal value of WJ-MSCs. Here, we revealed that the outcome of WJ-MSCs–NK cells crosstalk varied according to the type of cytokines (IL-2, IL-12, IL-15 and IL-21) utilized to activate NK cells. Differently activated NK cells exerted distinct cytotoxicities against WJ-MSCs causing their probable death. Cell surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, CD226, CD314, CD335, CD336 and CD337) governing the interaction between NK cells and their targets, exhibited altered expression profiles following the co-culture with WJ-MSCs. Although partly inhibited NK cell proliferation, WJ-MSCs enhanced activated NK-cell-mediated secretion of IFN-γ and TNF-α. Moreover, WJ-MSCs reinforced NK cells’ degranulation as well as secretion of perforin and granzymes. On the other hand, WJ-MSCs displayed only slight increase in ROS generation but significant decrease in A1 and C1 serpins expression following co-culture with activated NK cells. Altogether, our results highlight that WJ-MSCs–NK cells interaction may affect both cell type features and, therefore, their therapeutic properties.


Wharton’s Jelly mesenchymal stromal cells Natural killer cells Cell crosstalk Immunomodulation 



This project was supported by “Le Fonds National de la Recherche Scientifique, F.R.S.-FNRS” and the “Télévie”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethics committee of the “Institut Jules Bordet” (Belgium) and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. CrossRefPubMedGoogle Scholar
  2. 2.
    Pittenger MF (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. CrossRefPubMedGoogle Scholar
  3. 3.
    Mennan C, Wright K, Bhattacharjee A et al (2013) Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int 2013:916136. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weiss ML, Anderson C, Medicetty S et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874. CrossRefPubMedGoogle Scholar
  5. 5.
    Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS ONE 5:e9016. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    La Rocca G, Anzalone R, Corrao S et al (2009) Isolation and characterization of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131:267–282. CrossRefPubMedGoogle Scholar
  7. 7.
    Tyndall A, Walker UA, Cope A et al (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 9:301. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Auletta JJ, Eid SK, Wuttisarnwattana P et al (2015) Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells 33:601–614. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Verneris MR (2013) Natural killer cells and regulatory T cells: how to manipulate a graft for optimal GVL. Hematol Am Soc Hematol Educ Progr 2013:335–341. Google Scholar
  10. 10.
    de Rham C, Ferrari-Lacraz S, Jendly S et al (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther 9:R125. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Joyce MG, Sun PD (2011) The structural basis of ligand recognition by natural killer cell receptors. J Biomed Biotechnol 2011:203628. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Solana R, Casado JG, Delgado E et al (2007) Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 56:101–109. CrossRefPubMedGoogle Scholar
  13. 13.
    Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747. CrossRefPubMedGoogle Scholar
  14. 14.
    Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220. CrossRefPubMedGoogle Scholar
  15. 15.
    Sotiropoulou P, Perez S, Gritzapis AD et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85. CrossRefPubMedGoogle Scholar
  16. 16.
    Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490. CrossRefPubMedGoogle Scholar
  17. 17.
    Lupatov AY, Kim YS, Bystrykh OA et al (2017) Effect of fibroblast-like cells of mesenchymal origin of cytotoxic activity of lymphocytes against NK-sensitive target cells. Bull Exp Biol Med 162:552–557. CrossRefPubMedGoogle Scholar
  18. 18.
    De Bruyn C, Najar M, Raicevic G et al (2011) A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton’s jelly without enzymatic treatment. Stem Cells Dev 20:547–557. CrossRefPubMedGoogle Scholar
  19. 19.
    Krampera M, Galipeau J, Shi Y et al (2013) Immunological characterization of multipotent mesenchymal stromal cells—the international society for cellular therapy (ISCT) working proposal. Cytotherapy 15:1054–1061. CrossRefPubMedGoogle Scholar
  20. 20.
    Bouchlaka MN, Redelman D, Murphy WJ (2010) Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy 2:399–418. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ribeiro A, Laranjeira P, Mendes S et al (2013) Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 4:125–141. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Abdelrazik H, Spaggiari GM, Chiossone L, Moretta L (2011) Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur J Immunol 41:3281–3290. CrossRefPubMedGoogle Scholar
  23. 23.
    Yoon SR, Kim T-D, Choi I (2015) Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 47:e141. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu J, Song Y, Bakker AB et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732CrossRefPubMedGoogle Scholar
  25. 25.
    Chieregato K, Albiero E, Castegnaro S et al (2012) A study on mutual interaction between cytokine induced killer cells and umbilical cord-derived mesenchymal cells: implication for their in-vivo use. Blood Cells Mol Dis 49:159–165. CrossRefPubMedGoogle Scholar
  26. 26.
    Giuliani M, Bennaceur-Griscelli A, Nanbakhsh A et al (2014) TLR ligands stimulation protects MSC from NK killing. Stem Cells 32:290–300. CrossRefPubMedGoogle Scholar
  27. 27.
    Rasmusson I, Ringdén O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213. CrossRefPubMedGoogle Scholar
  28. 28.
    Hoogduijn MJ, Roemeling-van Rhijn M, Korevaar SS et al (2011) Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies. Hum Gene Ther 22:1587–1591. CrossRefPubMedGoogle Scholar
  29. 29.
    Poggi A, Prevosto C, Massaro A-M et al (2005) Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol 175:6352–6360. CrossRefPubMedGoogle Scholar
  30. 30.
    Jewett A, Arasteh A, Tseng HC et al (2010) Strategies to rescue mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity. PLoS ONE 5:1–14. CrossRefGoogle Scholar
  31. 31.
    Najar M, Rouas R, Raicevic G et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583. CrossRefPubMedGoogle Scholar
  32. 32.
    Poggi A, Zocchi MR (2014) NK cell autoreactivity and autoimmune diseases. Front Immunol 5:27. PubMedPubMedCentralGoogle Scholar
  33. 33.
    Crop MJ, Korevaar SS, de Kuiper R et al (2011) Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells. Cell Transplant 20:1547–1559. CrossRefPubMedGoogle Scholar
  34. 34.
    Moretta A, Bottino C, Vitale M et al (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223. CrossRefPubMedGoogle Scholar
  35. 35.
    Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255–259. CrossRefPubMedGoogle Scholar
  36. 36.
    Bottino C, Castriconi R, Pende D et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    DelaRosa O, Sánchez-Correa B, Morgado S et al (2012) Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev 21:1333–1343. CrossRefPubMedGoogle Scholar
  38. 38.
    Götherström C, Lundqvist A, Duprez IR et al (2011) Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 13:269–278. CrossRefPubMedGoogle Scholar
  39. 39.
    Spaggiari GM, Capobianco A, Abdelrazik H et al (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333. CrossRefPubMedGoogle Scholar
  40. 40.
    Pradier A, Passweg J, Villard J, Kindler V (2011) Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant 20:681–691. CrossRefPubMedGoogle Scholar
  41. 41.
    Chatterjee D, Marquardt N, Tufa DM et al (2014) Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity. Cell Commun Signal 12:63. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhao Z-G, Cao Z, Xu W et al (2012) Immune protection function of multipotent mesenchymal stromal cells: role of transforming growth factor-β1. Cancer Invest 30:646–656. CrossRefPubMedGoogle Scholar
  43. 43.
    Li Y, Qu Y, Wu Y et al (2011) Bone marrow mesenchymal stem cells reduce the antitumor activity of cytokine-induced killer/natural killer cells in K562 NOD/SCID mice. Ann Hematol 90:873–885. CrossRefPubMedGoogle Scholar
  44. 44.
    Giuliani M, Oudrhiri N (2011) Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood 118:3254–3262. CrossRefPubMedGoogle Scholar
  45. 45.
    Pazina T, Shemesh A, Brusilovsky M et al (2017) Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front Immunol 8:369. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lebbink RJ, van den Berg MCW, de Ruiter T et al (2008) The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J Immunol 180:1662–1669. CrossRefPubMedGoogle Scholar
  47. 47.
    Fu Q, Man X, Yu M et al (2017) Human decidua mesenchymal stem cells regulate decidual natural killer cell function via interactions between collagen and leukocyte‑associated immunoglobulin‑like receptor 1. Mol Med Rep 16:2791–2798. CrossRefPubMedGoogle Scholar
  48. 48.
    Warren HS (1996) NK cell proliferation and inflammation. Immunol Cell Biol 74:473–480. CrossRefPubMedGoogle Scholar
  49. 49.
    Blanco B, Herrero-Sánchez MC, Rodríguez-Serrano C et al (2016) Immunomodulatory effects of bone marrow versus adipose tissue derived mesenchymal stromal cells on NK cells: implications in the transplantation setting. Eur J Haematol. PubMedGoogle Scholar
  50. 50.
    Perussia (1996) The cytokine profile of resting and activated NK cells. Methods 9:370–378CrossRefPubMedGoogle Scholar
  51. 51.
    Thomas H, Jäger M, Mauel K et al. (2014) Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion.
  52. 52.
    Chatterjee D, Marquardt N, Tufa DM et al (2014) Human umbilical cord-derived mesenchymal stem cells utilize activin-A to suppress interferon-γ production by natural killer cells. Front Immunol 5:662. PubMedPubMedCentralGoogle Scholar
  53. 53.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. CrossRefPubMedGoogle Scholar
  54. 54.
    Noone C, Kihm A, English K et al (2013) IFN-γ stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells Dev 22:3003–3014. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Almeida CR, Vasconcelos DP, Gonçalves RM, Barbosa MA (2012) Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. J R Soc Interface 9:261–271. CrossRefPubMedGoogle Scholar
  56. 56.
    Petri RM, Hackel A, Hahnel K et al (2017) Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Rep 280:12239–12245. Google Scholar
  57. 57.
    Cui R, Rekasi H, Hepner-Schefczyk M et al (2016) Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Res Ther 7:88. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Krzewski K, Coligan JE (2012) Human NK cell lytic granules and regulation of their exocytosis. Front Immunol. PubMedPubMedCentralGoogle Scholar
  59. 59.
    Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22. CrossRefPubMedGoogle Scholar
  60. 60.
    de Witte SFH, Merino AM, Franquesa M et al (2017) Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Res Ther 8:140. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952. CrossRefPubMedGoogle Scholar
  62. 62.
    Chen X, Song M, Zhang B, Zhang Y (2016) Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxidative Med Cell Longev 2016:1–10. Google Scholar
  63. 63.
    Padgett LE, Broniowska KA, Hansen PA et al (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kaiserman D, Bird PI (2010) Control of granzymes by serpins. Cell Death Differ 17:586–595. CrossRefPubMedGoogle Scholar
  65. 65.
    El Haddad N, Moore R, Heathcote D et al (2011) The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. J Immunol 187:2252–2260. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mehdi Najar
    • 1
  • Mohammad Fayyad-Kazan
    • 2
  • Nathalie Meuleman
    • 1
    • 2
  • Dominique Bron
    • 1
    • 2
  • Hussein Fayyad-Kazan
    • 3
  • Laurence Lagneaux
    • 1
  1. 1.Laboratory of Clinical Cell Therapy, Institut Jules BordetUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Hematology Department, Institut Jules BordetUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences ILebanese UniversityHadathLebanon

Personalised recommendations