Skip to main content
Log in

Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Insect cell lines have been utilized as an important higher eukaryotic model system to decipher stress responses and cell death mechanisms. Lepidopteran Sf9 cells (derived from the ovaries of Spodoptera frugiperda) display nearly 100 times higher resistance to ionizing radiation in contrast to mammalian cells, which is partly contributed by an unusually high HDAC activity. However, their response to HDAC inhibition remains to be evaluated. In the present study, the effects of HDAC inhibitor (NaBt) on Sf9 cellular/nuclear morphology, cell cycle progression, DNA damage/repair, redox status, and mitochondrial perturbations were evaluated. NaBt-induced apoptosis was evident at 18 h in Sf9 cells at 2 mM concentration, primarily through mitochondrial induction of oxidative stress and subsequent DNA damage. Cell cycle analysis revealed appearance of sub-G1 DNA content at 12 h onwards and DNA fragmentation by 18 h. Initial few hours of treatment caused significant loss in MMP through oxidation of mitochondrial inner membrane protein, i.e., cardiolipin. HDAC inhibition-mediated apoptosis was associated with increased Bax/Bcl2 ratio, mitochondrial cytochrome-c release, and caspase-3 activation. The study thus infers that Sf9 cells, which can withstand very high radiation doses, are quite sensitive to the increase in the chromatin acetylation levels. In addition, HDAC inhibition also sensitized Sf9 cells to radiation-induced DNA damage, further corroborating our recent finding that chromatin compactness contributes significantly to their radioresistance. Therefore, the study demonstrates prominence of prevailing DNA/chromatin protective mechanisms in Lepidopteran insect cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Sf9:

Spodoptera frugiperda-9

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

NaBt:

Sodium butyrate

HDACs:

Histone deacetylases

References

  1. Koval TM (1991) Gamma-ray and UV sensitive strains of a radioresistant cell line: isolation and cross-sensitivity to other agents. Radiat Res 127:58–63

    Article  PubMed  CAS  Google Scholar 

  2. Koval TM (1991) Recovery from exposure to DNA-damaging chemicals in radiation-resistant insect cells. Mutat Res 262:219–225

    Article  PubMed  CAS  Google Scholar 

  3. Kumar JS, Suman S, Singh V, Chandna S (2012) Radioresistant Sf9 insect cells display moderate resistance against cumene hydroperoxide. Mol Cell Biochem 367:141–151

    Article  PubMed  CAS  Google Scholar 

  4. Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 14:5212–5222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kumarswamy R, Seth RK, Dwarakanath BS, Chandna S (2009) Mitochondrial regulation of insect cell apoptosis: evidence for permeability transition pore-independent cytochrome-c release in the Lepidopteran Sf9 cells. Int J Biochem Cell Biol 41:1430–1440

    Article  PubMed  CAS  Google Scholar 

  6. Kumarswamy R, Chandna S (2010) Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line. Cell Biol Int 34:851–857

    Article  PubMed  CAS  Google Scholar 

  7. Chandna S (2010) RE: Multiple factors conferring high radioresistance in insect Sf9 cells. Mutagenesis 25:431–432

    Article  PubMed  CAS  Google Scholar 

  8. Kumar A, Ghosh S, Chandna S (2015) Evidence for microRNA-31 dependent Bim-Bax interaction preceding mitochondrial Bax translocation during radiation-induced apoptosis. Sci Rep 5:15923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chandna S, Dwarakanath BS, Seth RK, Khaitan D, Adhikari JS, Jain V (2004) Radiation responses of Sf9, a highly radioresistant lepidopteran insect cell line. Int J Radiat Biol 80:301–315

    Article  PubMed  CAS  Google Scholar 

  10. Ljungman M, Nyberg S, Nygren J, Eriksson M, Ahnström G (1991) DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells. Radiat Res 127:171–176

    Article  PubMed  CAS  Google Scholar 

  11. Ljungman M (1991) The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers. Radiat Res 126:58–64

    Article  PubMed  CAS  Google Scholar 

  12. Ljungman M, Hanawalt PC (1992) Efficient protection against oxidative DNA damage in chromatin. Mol Carcinog 5:264–269

    Article  PubMed  CAS  Google Scholar 

  13. Kornberg RD, Lorch Y (1992) Chromatin structure and transcription. Annu Rev Cell Biol 8:563–587

    Article  PubMed  CAS  Google Scholar 

  14. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  PubMed  CAS  Google Scholar 

  15. Adam S, Dabin J, Polo SE (2015) Chromatin plasticity in response to DNA damage: the shape of things to come. DNA Repair 32:120–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xu Y, Price BD (2011) Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 10:261–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 3:422–429

    Article  PubMed  CAS  Google Scholar 

  18. Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sharma K, Kumar A, Chandna S (2016) Constitutive hyperactivity of histone deacetylases enhances radioresistance in Lepidopteran Sf9 insect cells. Biochim Biophys Acta 1860:1237–1246

    Article  PubMed  CAS  Google Scholar 

  20. Suman S, Seth RK, Chandna S (2011) A calcium-insensitive attenuated nitrosative stress response contributes significantly in the radioresistance of Sf9 insect cells. Int J Biochem Cell Biol 43:1340–1353

    Article  PubMed  CAS  Google Scholar 

  21. Suman S, Pandey A, Chandna S (2012) An improved non-enzymatic “DNA ladder assay” for more sensitive and early detection of apoptosis. Cytotechnology 64:9–14

    Article  PubMed  Google Scholar 

  22. Chandna S (2004) Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry A 61:127–133

    Article  PubMed  CAS  Google Scholar 

  23. López-Larraza DM, Padrón J, Ronci NE, Vidal Rioja LA (2006) Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin. Mutat Res 600:93–101

    Article  PubMed  CAS  Google Scholar 

  24. Frank CL, Manandhar D, Gordân R, Crawford GE (2016) HDAC inhibitors cause site-specific chromatin remodeling at PU.1-bound enhancers in K562 cells. Epigenetics Chromatin 9:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S-2493S

    Article  PubMed  Google Scholar 

  26. Rosato RR, Grant S (2005) Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 9:809–824

    Article  PubMed  CAS  Google Scholar 

  27. Chen Q, Chai YC, Mazumder S et al (2003) The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 10:323–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ogura A, Oowada S, Kon Y et al (2009) Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells. Cancer Lett 277:64–71

    Article  PubMed  CAS  Google Scholar 

  29. Hambarde S, Singh V, Chandna S (2013) Evidence for involvement of cytosolic thioredoxin peroxidase in the excessive resistance of Sf9 Lepidopteran insect cells against radiation-induced apoptosis. PLoS ONE 8:e58261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Suman S, Seth RK, Chandna S (2009) Mitochondrial antioxidant defence in radio-resistant Lepidopteran insect cells. Bioinformation 4:19–23

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suman S, Khan Z, Zarin M, Chandna S, Seth RK (2015) Radioresistant Sf9 insect cells display efficient antioxidant defence against high dose γ-radiation. Int J Radiat Biol 91:732–741

    Article  PubMed  CAS  Google Scholar 

  32. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2:1273–1284

    PubMed  CAS  Google Scholar 

  33. Rosato RR, Almenara JA, Grant S (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637–3645

    PubMed  CAS  Google Scholar 

  34. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  PubMed  CAS  Google Scholar 

  35. Robert C, Rassool FV (2012) HDAC inhibitors: roles of DNA damage and repair. Adv Cancer Res 116:87–129

    Article  PubMed  CAS  Google Scholar 

  36. Kumarswamy R, Chandna S (2009) Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them. Mitochondrion 9:1–8

    Article  PubMed  CAS  Google Scholar 

  37. Kroemer G, Petit P, Zamzami N, Vayssière JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    Article  PubMed  CAS  Google Scholar 

  38. Koval TM, Kazmar ER (1988) DNA double-strand break repair in eukaryotic cell lines having radically different radiosensitivities. Radiat Res 113(2):268–277

    Article  PubMed  CAS  Google Scholar 

  39. Cheng IC, Lee HJ, Wang TC (2009) Multiple factors conferring high radioresistance in insect Sf9 cells. Mutagenesis 24(3):259–269

    Article  PubMed  CAS  Google Scholar 

  40. Suman S, Khaitan D, Pati U, Seth RK, Chandna S (2009) Stress response of a p53 homologue in the radioresistant Sf9 insect cells. Int J Radiat Biol 85(3):238–249

    Article  PubMed  CAS  Google Scholar 

  41. Cerna D, Camphausen K, Tofilon PJ (2006) Histone deacetylation as a target for radiosensitization. Curr Top Dev Biol 73:173–204

    Article  PubMed  CAS  Google Scholar 

  42. Neuzil J, Swettenham E, Gellert N (2004) Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun 314:186–191

    Article  PubMed  CAS  Google Scholar 

  43. Karagiannis TC, Harikrishnan KN, El-Osta A (2005) The histone deacetylase inhibitor, Trichostatin A, enhances radiation sensitivity and accumulation of gammaH2A.X. Cancer Biol Ther 4:787–793

    Article  PubMed  CAS  Google Scholar 

  44. Downs JA, Nussenzweig MC, Nussenzweig A (2007) Chromatin dynamics and the preservation of genetic information. Nature 447:951–958

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded through DRDO (Defence Research and Development Organization) Grant# INM-311.1.5. JSK received research fellowship/associateship from Indian Council of Medical Research (ICMR)/Defence Research and Development Organization (DRDO), India during the course of this study.

Author information

Authors and Affiliations

Authors

Contributions

SC and JSK designed the study; JSK conducted the experiments; SC, SS, and JSK analyzed data; SC provided materials and supplies; JSK, SS, and SC wrote and approved this manuscript for final submission.

Corresponding author

Correspondence to Sudhir Chandna.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J.S., Suman, S. & Chandna, S. Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition. Mol Cell Biochem 444, 207–218 (2018). https://doi.org/10.1007/s11010-017-3245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3245-0

Keywords

Navigation