Skip to main content
Log in

Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Frequent abnormalities in 7p12 locus in different tumors like lung cancer candidate this region for novel regulatory elements. MiRNAs as novel regulatory elements encoded within the human genome are potentially oncomiRs or miR suppressors. Here, we have used bioinformatics tools to search for the novel miRNAs embedded within human chromosome 7p12. A bona fide stem loop (named mirZa precursor) had the features of producing a real miRNA (named miRZa) which was detected through RT-qPCR following the overexpression of its precursor. Then, endogenous miRZa was detected in human cell lines and tissues and sequenced. Consistent to the bioinformatics prediction, RT-qPCR as well as dual luciferase assay indicated that SMAD3 and IGF1R genes were targeted by miRZa. MiRZa-3p and miRZa-5p were downregulated in lung tumor tissue samples detected by RT-qPCR, and mirZa precursor overexpression in SW480 cells resulted in increased sub-G1 cell population. Overall, here we introduced a novel miRNA which is capable of targeting SMAD3 and IGF1R regulatory genes and increases the cell population in sub-G1 stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNAs in human cancer. In. MicroRNA cancer regulation. Springer, Berlin, pp 1–20

    Google Scholar 

  3. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  4. Jacobsen A, Silber J, Harinath G, Huse JT, Schultz N, Sander C (2013) Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol 20:1325–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE, Mushinski JF, Stephens R, Caplen NJ (2008) The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res 6:212–221

    Article  PubMed  CAS  Google Scholar 

  6. Testa JR, Siegfried JM, Liu Z, Hunt JD, Feder MM, Litwin S, Zhou JY, Taguchi T, Keller SM (1994) Cytogenetic analysis of 63 non-small cell lung carcinomas: recurrent chromosome alterations amid frequent and widespread genomic upheaval. Genes Chromosom Cancer 11:178–194

    Article  PubMed  CAS  Google Scholar 

  7. Yamada T, Kohno T, Navarro JM, Ohwada S, Perucho M, Yokota J (2000) Frequent chromosome 8q gains in human small cell lung carcinoma detected by arbitrarily primed-PCR genomic fingerprinting. Cancer Genet Cytogenet 120:11–17

    Article  PubMed  CAS  Google Scholar 

  8. Ubagai T, Matsuura S, Tauchi H, Itou K, Komatsu K (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8:83–88

    PubMed  CAS  Google Scholar 

  9. Crowell RE, Gilliland FD, Temes RT, Harms HJ, Neft RE, Heaphy E, Auckley DH, Crooks LA, Jordan SW, Samet JM (1996) Detection of trisomy 7 in nonmalignant bronchial epithelium from lung cancer patients and individuals at risk for lung cancer. Cancer Epidemiol Biomarkers Prev 5:631–637

    PubMed  CAS  Google Scholar 

  10. Teyssier J-R, Sadrin R, Nou J-M, Bureau G, Adnet J-J, Bajolle F, Pigeon F (1985) Trisomy 7 in a lung carcinoid tumor: precocious index of malignant transformation? Cancer Genet Cytogenet 15:277–282

    Article  PubMed  CAS  Google Scholar 

  11. Zojer N, Dekan G, Ackermann J, Fiegl M, Kaufmann H, Drach J, Huber H (2000) Aneuploidy of chromosome 7 can be detected in invasive lung cancer and associated premalignant lesions of the lung by fluorescence in situ hybridisation. Lung Cancer 28:225–235

    Article  PubMed  CAS  Google Scholar 

  12. Cooper DN (ed) (2005) The molecular genetics of lung cancer. Springer, Berlin, vol 117, 410–410. ISBN 3-540-22985-X, hardcover,€ 106.99, Human Genetics

    Google Scholar 

  13. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, Astolfi A, Chiaretti S, Vitale A, Messa F (2009) Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1—positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114:2159–2167

    Article  PubMed  CAS  Google Scholar 

  14. Paulsson K, Cazier J-B, MacDougall F, Stevens J, Stasevich I, Vrcelj N, Chaplin T, Lillington DM, Lister TA, Young BD (2008) Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 105:6708–6713

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maniatis T (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  16. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  PubMed  CAS  Google Scholar 

  17. Parsi S, Soltani BM, Hosseini E, Tousi SE, Mowla SJ (2012) Experimental verification of a predicted intronic microRNA in human NGFR gene with a potential pro-apoptotic function. PloS ONE 7:e35561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  PubMed  CAS  Google Scholar 

  21. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang B-T, Wang S (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 122:4059–4076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Stahlhut C, Slack FJ (2013) MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med 5:1

    Article  Google Scholar 

  23. Lee J-O, Kim TM, Lee S-H, Kim D-W, Kim S, Jeon Y-K, Chung DH, Kim W-H, Kim YT, Yang S-C (2011) Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J Thorac Oncol 6:1474–1480

    Article  PubMed  Google Scholar 

  24. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  PubMed  CAS  Google Scholar 

  25. Manterola L, Guruceaga E, Pérez-Larraya JG, González-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Samprón N, Barrena C (2014) A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology. https://doi.org/10.1093/neuonc/not218

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ekhteraei-Tousi S, Mohammad-Soltani B, Sadeghizadeh M, Mowla SJ, Parsi S, Soleimani M (2015) Inhibitory effect of hsa-miR-590-5p on cardiosphere-derived stem cells differentiation through downregulation of TGFB signaling. J Cell Biochem 116:179–191

    Article  PubMed  CAS  Google Scholar 

  27. Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, Abe K (2015) Time-dependent profiles of MicroRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transplant 24:367–376

    Article  PubMed  Google Scholar 

  28. Gomes CPDC., Cho J-H, Hood LE, Franco OL, Pereira RWD, Wang K (2013) A review of computational tools in microRNA discovery. Front Genet 4:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dokanehiifard S, Soltani BM, Parsi S, Hosseini F, Javan M, Mowla SJ (2015) Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell Mol Life Sci 72:2613–2625

    Article  PubMed  CAS  Google Scholar 

  30. Najafi H, Soltani BM, Dokanehiifard S, Nasiri S, Mowla SJ (2017) Alternative splicing of the OCC-1 gene generates three splice variants and a novel exonic microRNA, which regulate the Wnt signaling pathway. RNA 23:70–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Saleh AJ, Soltani BM, Dokanehiifard S, Medlej A, Tavalaei M, Mowla SJ (2016) Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer. Tumor Biol 37:14089–14101

    Article  CAS  Google Scholar 

  32. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ben-Hamo R, Efroni S (2015) MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 6:1594

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2:47–63

    Article  PubMed  CAS  Google Scholar 

  35. Werner H, Karnieli E, Rauscher FJ, LeRoith D (1996) Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 93:8318–8323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Saman Hosseinkhani, Dr. Sadat Dokanihiifard, Abdullah Medlej, and Ali Jason Saleh for their kind advice. This work was supported by TMU, ISTI, and INSF financial aids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram M. Soltani.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with any organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoballa, M.H., Soltani, B.M., Mowla, S.J. et al. Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest. Mol Cell Biochem 444, 179–186 (2018). https://doi.org/10.1007/s11010-017-3242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3242-3

Keywords

Navigation