Molecular and Cellular Biochemistry

, Volume 444, Issue 1–2, pp 161–168 | Cite as

Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy

  • Rania M. Khalil
  • Walied S. Abdo
  • Ahmed Saad
  • Eman G. Khedr


Skeletal muscle atrophy occurs in different catabolic conditions and mostly accompanied with upregulation of Muscle ring finger 1 (MuRF1) gene which is one of the master regulatory genes in muscle atrophy. Taurine amino acid is widely distributed in different tissues and has anti-inflammatory and antioxidant effects. This study aimed to investigate the potential influence of taurine on muscle atrophy induced by reduced mechanical loading. Twenty-eight Albino mice were used, and divided equally into four groups: group I (control); group II (immobilization); group III (immobilization + taurine); and group IV (taurine). Quadriceps muscle sections were taken for histopathology, immunohistochemical analysis of caspase 3 expression, and qRT-PCR of MuRF1 gene. Our data revealed Zenker necrosis associated with axonal injury of the nerve trunk of the immobilized muscle together with increase of caspase 3 expression and upregulation of MuRF1 gene. While, taurine supplementation alleviated the muscular and neural tissues damage associated with disuse skeletal muscle atrophy through downregulation of MuRF1 gene and decrease of tissue caspase 3 expression. In conclusion, taurine may be helpful to counteract apoptosis and up-regulated MuRF1 gene expression related to muscle atrophy, which might be hopeful for a large number of patients.


Caspase 3  MuRF1 Muscle atrophy Proteolysis Taurine 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care 12:78–85. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Song J, Saeman MR, Baer LA, Cai AR, Wade CE, Wolf SE (2017) Exercise altered the skeletal muscle microRNAs and gene expression profiles in burn rats with hindlimb unloading. J Burn Care Res 38:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bilodeau PA, Coyne ES, Wing SS (2016) The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 311:C392–C403. CrossRefPubMedGoogle Scholar
  5. 5.
    Wing SS, Lecker SH, Jagoe RT (2011) Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 48(2):49–70. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    de Theije CC, Langen RC, Lamers WH, Schols AM, Köhler SE (2013) Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy. Am J Physiol Lung Cell Mol Physiol 305(1):L82–L91. CrossRefPubMedGoogle Scholar
  8. 8.
    Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK (2013) Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol (1985) 114:1482–1489. CrossRefGoogle Scholar
  9. 9.
    Kang C, Yeo D, Ji LL (2016) Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice. Acta Physiol (Oxf) 218:188–197. CrossRefPubMedGoogle Scholar
  10. 10.
    Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G, Brunetti G, Moretti B, Tarantino U, Colucci SC, Reseland JE, Vettor R, Cinti S, Grano M (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110CrossRefPubMedGoogle Scholar
  12. 12.
    De Luca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13:243. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gebara E, Udry F, Sultan S, Toni N (2015) Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res 14:369–379. CrossRefPubMedGoogle Scholar
  14. 14.
    Machida S, Booth FW (2005) Changes in signalling molecule levels in 10-day hindlimb immobilized rat muscles. Acta Physiol Scand 183:171–179. CrossRefPubMedGoogle Scholar
  15. 15.
    Okamoto T, Torii S, Machida S (2011) Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles. J Physiol Sci 61:537–546. CrossRefPubMedGoogle Scholar
  16. 16.
    Kirillina VP, Borovikov Iu S, Stabrovskaia VI, Braun AD (1981) State of the contractile apparatus in the development of a pathological process in muscle. IV. Effect of Ca2+ on the process of contraction nodule formation and on the ATPase activity of muscle actomyosin in Zenker’s necrosis. Tsitologiia 23:1003–1008.PubMedGoogle Scholar
  17. 17.
    Pond AL, Nedele C, Wang WH, Wang X, Walther C, Jaeger C, Bradley KS, Du H, Fujita N, Hockerman GH, Hannon KM (2014) The mERG1a channel modulates skeletal muscle MuRF1, but not MAFbx, expression.Muscle Nerve 49:378–388. CrossRefPubMedGoogle Scholar
  18. 18.
    Landau S (2004) A handbook of statistical analyses using SPSS. CRC Press, BostonGoogle Scholar
  19. 19.
    Yao QY, Chen DP, Ye DM, Diao YP, Lin Y (2014) Modulatory effects of taurine on jejunal contractility. Braz J Med Biol Res 47(12):1068–1074CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saifetiarova J, Liu X, Taylor AM, Li J, Bhat MA (2017) Axonal domain disorganization in Caspr1 and Caspr2 mutant myelinated axons affects neuromuscular junction integrity, leading to muscle atrophy. J Neurosci Res 95:1373–1390. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Capogrosso RF, Cozzoli A, Mantuano P, Camerino GM, Massari AM, Sblendorio VT, De Bellis M, Tamma R, Giustino A, Nico B, Montagnani M, De Luca A (2016) Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: a comparison with the gold standard, alpha-methyl prednisolone. Pharmacol Res 106:101–113. CrossRefPubMedGoogle Scholar
  22. 22.
    Pierno S, Liantonio A, Camerino GM, De Bellis M, Cannone M, Gramegna G, Scaramuzzi A, Simonetti S, Nicchia GP, Basco D, Svelto M, Desaphy JF, Camerino DC (2012) Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids 43:431–445. CrossRefPubMedGoogle Scholar
  23. 23.
    Terrill JRP, Grounds MD, Arthur PG (2016) Increased taurine in pre-weaned juvenile mdx mice greatly reduces the acute onset of myofibre necrosis and dystropathology and prevents inflammation. PLoS Curr. CrossRefGoogle Scholar
  24. 24.
    Khedr NF, Khalil RM (2015) Effect of hesperidin on mice bearing Ehrlich solid carcinoma maintained on doxorubicin. Tumour Biol 36:9267–9275. CrossRefPubMedGoogle Scholar
  25. 25.
    Stevens-Lapsley JE, Ye F, Liu M, Borst SE, Conover C, Yarasheski KE, Walter GA, Sweeney HL, Vandenborne K (2010) Impact of viral-mediated IGF-I gene transfer on skeletal muscle following cast immobilization. Am J Physiol Endocrinol Metab 299:E730–E740. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Akdemir O, Hede Y, Zhang F, Lineaweaver WC, Arslan Z, Songur E (2011) Effects of taurine on reperfusion injury. J Plast Reconstr Aesthet Surg 64:921–928. CrossRefPubMedGoogle Scholar
  27. 27.
    Bouckenooghe T, Remacle C, Reusens B (2006) Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 9:728–733. CrossRefPubMedGoogle Scholar
  28. 28.
    Stacchiotti A, Rovetta F, Ferroni M, Corsetti G, Lavazza A, Sberveglieri G, Aleo MF (2014) Taurine rescues cisplatin-induced muscle atrophy in vitro: a morphological study. Oxid Med Cell Longev 2014:840951. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aydin AF, Coban J, Dogan-Ekici I, Betul-Kalaz E, Dogru-Abbasoglu S, Uysal M (2016) Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in d-galactose aging model. Metab Brain Dis 31:337–345. CrossRefPubMedGoogle Scholar
  30. 30.
    Adedara IA, Olabiyi BF, Ojuade TD, Idris UF, Onibiyo EM, Farombi EO (2017) Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats. Can J Physiol Pharmacol 95:1019–1029. CrossRefPubMedGoogle Scholar
  31. 31.
    Mulder E, Clement G, Linnarsson D, Paloski WH, Wuyts FP, Zange J, Frings-Meuthen P, Johannes B, Shushakov V, Grunewald M, Maassen N, Buehlmeier J, Rittweger J (2015) Musculoskeletal effects of 5 days of bed rest with and without locomotion replacement training. Eur J Appl Physiol 115:727–738. CrossRefPubMedGoogle Scholar
  32. 32.
    Baehr LM, West DWD, Marshall AG, Marcotte GR, Baar K, Bodine SC (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol (1985) 122:1336–1350. CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Banerjee R, He J, Spaniel C, Quintana MT, Wang Z, Bain J, Newgard CB, Muehlbauer MJ, Willis MS (2015) Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes. Metabolomics 11:312–322. CrossRefPubMedGoogle Scholar
  34. 34.
    Crass MF 3rd, Lombardini JB (1977) Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sci 21:951–958CrossRefPubMedGoogle Scholar
  35. 35.
    Jong CJ, Ito T, Schaffer SW (2015) The ubiquitin–proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids 47:2609–2622. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Rania M. Khalil
    • 1
  • Walied S. Abdo
    • 2
  • Ahmed Saad
    • 3
  • Eman G. Khedr
    • 4
  1. 1.Biochemistry Department, Faculty of PharmacyDelta UniversityGamasaEgypt
  2. 2.Pathology Department, Faculty of Veterinary MedicineKafrelsheik UniversityKafrelsheikEgypt
  3. 3.Pharmacological Department, Faculty of PharmacyDelta UniversityGamasaEgypt
  4. 4.Biochemistry Department, Faculty of PharmacyTanta UniversityTantaEgypt

Personalised recommendations