Molecular and Cellular Biochemistry

, Volume 444, Issue 1–2, pp 77–86 | Cite as

Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells

  • Shanshan Cui
  • Wen Li
  • Pengyan Wang
  • Xin Lv
  • Yuxia Gao
  • Guowei Huang


Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0–1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.


Folic acid Homocysteine Apoptosis Human umbilical vein endothelial cells 



Avian myeloblastosis virus


Analysis of variance


B-cell lymphoma 2


Bcl-2-associated protein X


Cysteinyl aspartate-specific proteinase




Human umbilical vein endothelial cells


Horseradish peroxidase


Methyl thiazolyl tetrazolium


Polymerase chain reaction


Sodium dodecyl sulfate polyacrylamide gel


Tumor suppressor p53



This research was supported by a grant from the National Natural Science Foundation of China (No. 81373002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56(1):111–128PubMedPubMedCentralGoogle Scholar
  2. 2.
    Han S, Wu H, Li W, Gao P (2015) Protective effects of genistein in homocysteine-induced endothelial cell inflammatory injury. Mol Cell Biochem 403(1–2):43–49. CrossRefPubMedGoogle Scholar
  3. 3.
    Yang XH, Li P, Yin YL, Tu JH, Dai W, Liu LY, Wang SX (2015) Rosiglitazone via PPARgamma-dependent suppression of oxidative stress attenuates endothelial dysfunction in rats fed homocysteine thiolactone. J Cell Mol Med 19(4):826–835. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chernyavskiy I, Veeranki S, Sen U, Tyagi SC (2016) Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci 1363:138–154. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu S, Gao X, Yang S, Meng M, Yang X, Ge B (2015) The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundam Clin Pharmacol 29(3):252–259. CrossRefPubMedGoogle Scholar
  6. 6.
    Jia F, Wu C, Chen Z, Lu G, Sun J (2016) Atorvastatin attenuates atherosclerotic plaque destabilization by inhibiting endoplasmic reticulum stress in hyperhomocysteinemic mice. Mol Med Rep 13(4):3574–3580. CrossRefPubMedGoogle Scholar
  7. 7.
    Duthie SJ, Beattie JH, Gordon MJ, Pirie LP, Nicol F, Reid MD, Duncan GJ, Cantlay L, Horgan G, McNeil CJ (2015) Nutritional B vitamin deficiency alters the expression of key proteins associated with vascular smooth muscle cell proliferation and migration in the aorta of atherosclerotic apolipoprotein E null mice. Genes Nutr 10(1):446. CrossRefPubMedGoogle Scholar
  8. 8.
    Gurda D, Handschuh L, Kotkowiak W, Jakubowski H (2015) Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 47(7):1319–1339. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou YH, Tang JY, Wu MJ, Lu J, Wei X, Qin YY, Wang C, Xu JF, He J (2011) Effect of folic acid supplementation on cardiovascular outcomes: a systematic review and meta-analysis. PLoS ONE 6(9):e25142. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee M, Hong KS, Chang SC, Saver JL (2010) Efficacy of homocysteine-lowering therapy with folic acid in stroke prevention: a meta-analysis. Stroke 41(6):1205–1212. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Steegers-Theunissen RP, Wathen NC, Eskes TK, van Raaij-Selten B, Chard T (1997) Maternal and fetal levels of methionine and homocysteine in early human pregnancy. Br J Obstet Gynaecol 104(1):20–24CrossRefPubMedGoogle Scholar
  12. 12.
    Tian X, Shi Y, Liu N, Yan Y, Li T, Hua P, Liu B (2016) Upregulation of DAPK contributes to homocysteine-induced endothelial apoptosis via the modulation of Bcl2/Bax and activation of caspase 3. Mol Med Rep 14(5):4173–4179. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51CrossRefPubMedGoogle Scholar
  14. 14.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  15. 15.
    Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. New Engl J Med 324(17):1149–1155. CrossRefPubMedGoogle Scholar
  17. 17.
    Liu LH, Guo Z, Feng M, Wu ZZ, He ZM, Xiong Y (2012) Protection of DDAH2 overexpression against homocysteine-induced impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells. Cell Physiol Biochem 30(6):1413–1422. CrossRefPubMedGoogle Scholar
  18. 18.
    Li F, Chen Q, Song X, Zhou L, Zhang J (2015) MiR-30b Is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of Caspase 3. Int J Mol Sci 16(8):17682–17695. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li J, Luo M, Xie N, Wang J, Chen L (2016) Curcumin protects endothelial cells against homocysteine induced injury through inhibiting inflammation. Am J Transl Res 8(11):4598–4604PubMedPubMedCentralGoogle Scholar
  20. 20.
    Mierzecki A, Kloda K, Bukowska H, Chelstowski K, Makarewicz-Wujec M, Kozlowska-Wojciechowska M (2013) Association between low-dose folic acid supplementation and blood lipids concentrations in male and female subjects with atherosclerosis risk factors. Med Sci Monit 19:733–739. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hodis HN, Mack WJ, Dustin L, Mahrer PR, Azen SP, Detrano R, Selhub J, Alaupovic P, Liu CR, Liu CH, Hwang J, Wilcox AG, Selzer RH, Group BR (2009) High-dose B vitamin supplementation and progression of subclinical atherosclerosis: a randomized controlled trial. Stroke 40(3):730–736. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang L, Li H, Zhou Y, Jin L, Liu J (2015) Low-dose B vitamins supplementation ameliorates cardiovascular risk: a double-blind randomized controlled trial in healthy Chinese elderly. Eur J Nutr 54(3):455–464. CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX (2013) Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol Med Rep 8(4):967–972. CrossRefPubMedGoogle Scholar
  24. 24.
    Ren H, Mu J, Ma J, Gong J, Li J, Wang J, Gao T, Zhu P, Zheng S, Xie J, Yuan B (2016) Selenium inhibits homocysteine-induced endothelial dysfunction and apoptosis via activation of AKT. Cell Physiol Biochem 38(3):871–882. CrossRefPubMedGoogle Scholar
  25. 25.
    Catena C, Colussi G, Url-Michitsch M, Nait F, Sechi LA (2015) Subclinical carotid artery disease and plasma homocysteine levels in patients with hypertension. J Am Soc Hypertens 9(3):167–175. CrossRefPubMedGoogle Scholar
  26. 26.
    Yang B, Fan S, Zhi X, Wang Y, Wang Y, Zheng Q, Sun G (2014) Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7(1):74–90. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen H, Liu S, Ji L, Wu T, Ma F, Ji Y, Zhou Y, Zheng M, Zhang M, Huang G (2015) Associations between Alzheimer’s disease and blood homocysteine, vitamin B12, and folate: a case-control study. Curr Alzheimer Res 12(1):88–94CrossRefPubMedGoogle Scholar
  28. 28.
    Boot MJ, Steegers-Theunissen RP, Poelmann RE, Van Iperen L, Lindemans J, Gittenberger-de Groot AC (2003) Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Dev Dyn 227(2):301–308. CrossRefPubMedGoogle Scholar
  29. 29.
    Buemi M, Marino D, Di Pasquale G, Floccari F, Ruello A, Aloisi C, Corica F, Senatore M, Romeo A, Frisina N (2001) Effects of homocysteine on proliferation, necrosis, and apoptosis of vascular smooth muscle cells in culture and influence of folic acid. Thromb Res 104(3):207–213CrossRefPubMedGoogle Scholar
  30. 30.
    Huang RF, Yaong HC, Chen SC, Lu YF (2004) In vitro folate supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-ketocholesterol. Br J Nutr 92(6):887–894CrossRefPubMedGoogle Scholar
  31. 31.
    Craciunescu CN, Brown EC, Mar MH, Albright CD, Nadeau MR, Zeisel SH (2004) Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. J Nutr 134(1):162–166CrossRefPubMedGoogle Scholar
  32. 32.
    Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29(7):489–496. CrossRefPubMedGoogle Scholar
  33. 33.
    Mercer J, Bennett M (2006) The role of p53 in atherosclerosis. Cell Cycle 5(17):1907–1909. CrossRefPubMedGoogle Scholar
  34. 34.
    Yamaguchi H, Chen J, Bhalla K, Wang HG (2004) Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways. J Biol Chem 279(38):39431–39437. CrossRefPubMedGoogle Scholar
  35. 35.
    Borghetti G, Yamaguchi AA, Aikawa J, Yamazaki RK, de Brito GA, Fernandes LC (2015) Fish oil administration mediates apoptosis of Walker 256 tumor cells by modulation of p53, Bcl-2, caspase-7 and caspase-3 protein expression. Lipids Health Dis 14:94. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu R, Tang S, Wang M, Xu X, Yao C, Wang S (2016) MicroRNA-497 induces apoptosis and suppresses proliferation via the Bcl-2/Bax-caspase9-caspase3 pathway and cyclin D2 protein in HUVECs. PLoS ONE 11(12):e0167052. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Berens HM, Tyler KL (2011) The proapoptotic Bcl-2 protein Bax plays an important role in the pathogenesis of reovirus encephalitis. J Virol 85(8):3858–3871. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014. CrossRefPubMedGoogle Scholar
  40. 40.
    Zhu M, Li B, Ma X, Huang C, Wu R, Zhu W, Li X, Liang Z, Deng F, Zhu J, Xie W, Yang X, Jiang Y, Wang S, Wu J, Geng S, Xie C, Zhong C, Liu H (2016) Folic acid protected neural cells against aluminum-maltolate-induced apoptosis by preventing miR-19 downregulation. Neurochem Res 41(8):2110–2118. CrossRefPubMedGoogle Scholar
  41. 41.
    Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2008) Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 19(9):1634–1642. CrossRefPubMedGoogle Scholar
  42. 42.
    Xi H, Zhang Y, Xu Y, Yang WY, Jiang X, Sha X, Cheng X, Wang J, Qin X, Yu J, Ji Y, Yang X, Wang H (2016) Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circ Res 118(10):1525–1539. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115(10):2665–2672. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen CS, Tseng YT, Hsu YY, Lo YC (2013) Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17beta-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells. Neuroendocrinology 97(3):232–241. CrossRefPubMedGoogle Scholar
  45. 45.
    Sun Z, Lan X, Ahsan A, Xi Y, Liu S, Zhang Z, Chu P, Song Y, Piao F, Peng J, Lin Y, Han G, Tang Z (2016) Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation. Apoptosis 21(3):283–297. CrossRefPubMedGoogle Scholar
  46. 46.
    Xu Z, Lu G, Wu F (2009) Simvastatin suppresses homocysteine-induced apoptosis in endothelial cells: roles of caspase-3, cIAP-1 and cIAP-2. Hypertens Res 32(5):375–380. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
  2. 2.Department of CardiologyGeneral Hospital of Tianjin Medical UniversityTianjinChina

Personalised recommendations