Skip to main content
Log in

Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-β8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2015) Fact sheet no. 297. WHO Press. http://www.who.int/mediacentre/factsheets/fs297/en/

  2. Nascimento AV, Bousbaa H, Ferreira D, Sarmento B (2015) Non-small cell lung carcinoma: an overview on targeted therapy. Curr Drug Targets 16:1448–1463. https://doi.org/10.2174/1389450115666140528151649

    Article  PubMed  CAS  Google Scholar 

  3. Ellis PM, Vandermeer R (2011) Delays in the diagnosis of lung cancer. J Thorac Dis 3:183–188. https://doi.org/10.3978/j.issn.2072-1439.2011.01.01

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gildea TR, DaCosta Byfield S, Hogarth DK, Wilson DS, Quinn CC (2017) A retrospective analysis of delays in the diagnosis of lung cancer and associated costs. Clinicoecon Outcomes Res 9:261–269. https://doi.org/10.2147/CEOR.S132259

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis 25:2045–2052. https://doi.org/10.1093/carcin/bgh236

    Article  PubMed  CAS  Google Scholar 

  6. Menon J, Soto-Pantoja DR, Callahan MF, Cline JM, Ferrario CM, Tallant EA, Gallagher PE (2007) Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res 67:2809–2815. https://doi.org/10.1158/0008-5472.CAN-06-3614

    Article  PubMed  CAS  Google Scholar 

  7. Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA (2009) Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Cancer Ther 8:1676–1683. https://doi.org/10.1158/1535-7163.MCT-09-0161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Silva Bde O, Lima KF, Gonçalves LR, Silveira MB, Moraes KC (2016) MicroRNA profiling of the effect of the heptapeptide angiotensin-(1-7) in A549 lung tumor cells reveals a role for miRNA149-3p in cellular migration processes. PLoS ONE 11:e0162094. https://doi.org/10.1371/journal.pone.0162094

    Article  PubMed  CAS  Google Scholar 

  9. Ferreira AJ, Santos RAS, Almeida AP (2001) Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668. https://doi.org/10.1161/01.HYP.38.3.665

    Article  PubMed  CAS  Google Scholar 

  10. Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJH, Boomsma F, van Glist WH (2002) Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550. https://doi.org/10.1161/01.CIR.0000013847.0035.B9

    Article  PubMed  CAS  Google Scholar 

  11. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walter T (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263. https://doi.org/10.1073/pnas.1432869100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Curtis-Prior P (2004) The eicosanoids. Wiley Ed, West Sussex

    Book  Google Scholar 

  13. Gallagher PE, Cook K, Soto-Pantoja D, Menon J, Tallant EA (2011) Angiotensin peptides and lung cancer. Curr Cancer Drug Targets 11:394–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T, Zhao J (2017) Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion, and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int 4:384–391. https://doi.org/10.1002/cbin.10732

    Article  CAS  Google Scholar 

  15. Kalaitzidis RG, Elisaf MS (2017) Uncontrolled hypertension and oncology: clinical Τips. Curr Vasc Pharmacol. https://doi.org/10.2174/1570161115666170414121436

    Article  PubMed  Google Scholar 

  16. Katz JA (2013) COX-2 inhibition: what we learned—a controversial update on safety data. Pain Med Suppl 1:S29–S34. https://doi.org/10.1111/pme.12252

    Article  Google Scholar 

  17. McIntyre WF, Evans G (2014) The Vioxx® legacy: enduring lessons from the not so distant past. Cardiol J 21:203–205. https://doi.org/10.5603/CJ.2014.0029

    Article  PubMed  Google Scholar 

  18. Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU (1998) Signal transduction mechanisms involved in angiotensin-(1-7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284:388–398

    PubMed  CAS  Google Scholar 

  19. Passos-Silva DG, Verano-Braga T, Santos RA (2013) Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci (Lond) 124:443–456. https://doi.org/10.1042/CS20120461

    Article  CAS  Google Scholar 

  20. Patel VB, Bodiga S, Fan D, Das SK, Wang Z, Wang W, Basu R, Zhong J, Kassiri Z, Oudit GY (2012) Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension 59:1195–1203. https://doi.org/10.1161/HYPERTENSIONAHA.112.191650

    Article  PubMed  CAS  Google Scholar 

  21. Papinska AM, Mordwinkin NM, Meeks CJ, Jadhav SS, Rodgers KE (2015) Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br J Pharmacol. 172:4443–4445. https://doi.org/10.1111/bph.13225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Galandrin S, Denis C, Boularan C, Marie J, M’Kadmi C, Pilette C, Dubroca C, Nicaise Y, Seguelas MH, N’Guyen D, Banères JL, Pathak A, Sénard JM, Galés C (2016) Cardioprotective angiotensin-(1-7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor. Hypertension 68:1365–1374

    Article  PubMed  CAS  Google Scholar 

  23. Muñoz MC, Giani JF, Dominici FP (2010) Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regul Pept 161:1–7. https://doi.org/10.1016/j.regpep.2010.02.001

    Article  PubMed  CAS  Google Scholar 

  24. Ni L, Feng Y, Wan H, Ma Q, Fan L, Qian Y, Li Q, Xiang Y, Gao B (2012) Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep 27:783–790. https://doi.org/10.3892/or.2011.1554

    Article  PubMed  CAS  Google Scholar 

  25. Zhang F, Ren X, Zhao M, Zhou B, Han Y (2016) Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep 6:34621. https://doi.org/10.1038/srep34621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K (2009) A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77:181–187. https://doi.org/10.1016/j.diff.2008.10.001

    Article  PubMed  CAS  Google Scholar 

  27. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS ONE 6:e17850. https://doi.org/10.1371/journal.pone.0017850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pham H, Rodriguez CE, Donald GW, Hertzer KM, Jung XS, Chang HH, Moro A, Reber HA, Hines OJ, Eibl G (2013) miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem Biophys Res Commun 439:6–11. https://doi.org/10.1016/j.bbrc.2013.08.042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu K, Yang L, Li C, Zhu CH, Wang X, Yao Y, Jia YJ (2014) MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev 15:5583–5586

    Article  PubMed  Google Scholar 

  30. Da Silva W, Dos Santos RA, Moraes KC (2016) Mir-351–5p contributes to the establishment of a proinflammatory environment in the H9c2 cell line by repressing PTEN expression. Mol Cell Biochem 411:363–371. https://doi.org/10.1007/s11010-015-2598-5

    Article  PubMed  CAS  Google Scholar 

  31. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. https://doi.org/10.1093/nar/gkm952

    Article  PubMed  CAS  Google Scholar 

  32. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152

    Article  PubMed  CAS  Google Scholar 

  33. Wiggins H, Rappoport J (2010) An agarose spot assay for chemotactic invasion. Biotechniques 48:120–123. https://doi.org/10.2144/000113353

    Article  CAS  Google Scholar 

  34. Verano-Braga T, Schwämmle V, Sylvester M, Passos-Silva DG, Peluso AA, Etelvino GM, Santos RA, Roepstorff P (2012) Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11:3370–3381. https://doi.org/10.1021/pr3001755

    Article  PubMed  CAS  Google Scholar 

  35. Uddin S, Ahmed M, Hussain A, Assad L, Al-Dayel F, Bavi P, Al-Kuraya KS, Munkarah A (2010) Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer. Int J Cancer 126:382–394. https://doi.org/10.1002/ijc.24757

    Article  PubMed  CAS  Google Scholar 

  36. McCollum LT, Gallagher PE, Tallant EA (2012) Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts. Peptides 34:380–388. https://doi.org/10.1016/j.peptides.2012.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 20:642–655. https://doi.org/10.1016/j.cell.2009.01.035

    Article  CAS  Google Scholar 

  38. Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P (2010) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123:701–708. https://doi.org/10.1007/s10549-009-0671-z

    Article  PubMed  CAS  Google Scholar 

  39. Endaya B, Guan SP, Newman JP, Huynh H, Sia KC, Chong ST, Kok CYL, Chung AYF, Liu BB, Hui KM, Lam PYP (2017) Human mesenchymal stem cells preferentially migrate toward highly oncogenic human hepatocellular carcinoma cells with activated EpCAM signaling. Oncotarget. https://doi.org/10.18632/oncotarget.17633

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gaiser MR, Lämmermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN, Udey MC (2012) Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci USA 109:E889–E897. https://doi.org/10.1073/pnas.1117674109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patriarca C, Macchi RM, Marschner AK, Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38:68–75. https://doi.org/10.1016/j.ctrv.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  42. Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, Shigdar S, Delprado W, Graham P, Bucci J, Kearsley J, Li Y (2013) Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol 45:2736–2748. https://doi.org/10.1016/j.biocel.2013.09.008

    Article  PubMed  CAS  Google Scholar 

  43. Xu Z, Wu R (2012) Alteration in metastasis potential and gene expression in human lung cancer cell lines by ITGB8 silencing. Anat Rec (Hoboken). 295:1446–1454. https://doi.org/10.1002/ar.22521

    Article  CAS  Google Scholar 

  44. Mertens-Walker I, Fernandini BC, Maharaj MS, Rockstroh A, Nelson CC, Herington AC, Stephenson SA (2015) The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of integrin-β8 in prostate cancer cells. BMC Cancer 15:164. https://doi.org/10.1186/s12885-015-1164-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S, Marie JC, Travis MA (2015) Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential from suppression of T-cell-mediated inflammation. Immunity 42:903–915. https://doi.org/10.1016/j.immuni.2015.04.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Del Rey MJ, Izquierdo E, Usategui A, Gonzalo E, Blanco FJ, Acquadro F, Pablos JL (2010) The transcriptional response of normal and rheumatoid arthritis synovial fibroblasts to hypoxia. Arthritis Rheum 62:3584–3594. https://doi.org/10.1002/art.27750

    Article  PubMed  Google Scholar 

  47. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Zhu J, Xing R, Tie Y, Fu H, Zheng X, Yu B (2012) miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer 77:488–494. https://doi.org/10.1016/j.lungcan.2012.05.107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (474060/2012-8), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2014/21645-2; 2013/21186-5), and INCT-Nano-Biofarmacêutica. The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen C. M. Moraes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silveira, M.B., Lima, K.F., da Silva, A.R. et al. Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression. Mol Cell Biochem 444, 43–52 (2018). https://doi.org/10.1007/s11010-017-3229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3229-0

Keywords

Navigation