Advertisement

Molecular and Cellular Biochemistry

, Volume 444, Issue 1–2, pp 43–52 | Cite as

Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression

  • Marina Bonfogo da Silveira
  • Kelvin Furtado Lima
  • Andrea Renata da Silva
  • Robson Augusto Souza dos Santos
  • Karen C. M. Moraes
Article
  • 130 Downloads

Abstract

Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-β8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.

Keywords

Cellular migration processes Pro-inflammatory environment Small non-coding RNAs Tumorigeneses Vasoactive peptide 

Notes

Acknowledgements

This study was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (474060/2012-8), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2014/21645-2; 2013/21186-5), and INCT-Nano-Biofarmacêutica. The authors report no conflict of interest.

References

  1. 1.
    World Health Organization (2015) Fact sheet no. 297. WHO Press. http://www.who.int/mediacentre/factsheets/fs297/en/
  2. 2.
    Nascimento AV, Bousbaa H, Ferreira D, Sarmento B (2015) Non-small cell lung carcinoma: an overview on targeted therapy. Curr Drug Targets 16:1448–1463.  https://doi.org/10.2174/1389450115666140528151649 CrossRefPubMedGoogle Scholar
  3. 3.
    Ellis PM, Vandermeer R (2011) Delays in the diagnosis of lung cancer. J Thorac Dis 3:183–188.  https://doi.org/10.3978/j.issn.2072-1439.2011.01.01 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gildea TR, DaCosta Byfield S, Hogarth DK, Wilson DS, Quinn CC (2017) A retrospective analysis of delays in the diagnosis of lung cancer and associated costs. Clinicoecon Outcomes Res 9:261–269.  https://doi.org/10.2147/CEOR.S132259 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis 25:2045–2052.  https://doi.org/10.1093/carcin/bgh236 CrossRefPubMedGoogle Scholar
  6. 6.
    Menon J, Soto-Pantoja DR, Callahan MF, Cline JM, Ferrario CM, Tallant EA, Gallagher PE (2007) Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res 67:2809–2815.  https://doi.org/10.1158/0008-5472.CAN-06-3614 CrossRefPubMedGoogle Scholar
  7. 7.
    Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA (2009) Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Cancer Ther 8:1676–1683.  https://doi.org/10.1158/1535-7163.MCT-09-0161 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Silva Bde O, Lima KF, Gonçalves LR, Silveira MB, Moraes KC (2016) MicroRNA profiling of the effect of the heptapeptide angiotensin-(1-7) in A549 lung tumor cells reveals a role for miRNA149-3p in cellular migration processes. PLoS ONE 11:e0162094.  https://doi.org/10.1371/journal.pone.0162094 CrossRefPubMedGoogle Scholar
  9. 9.
    Ferreira AJ, Santos RAS, Almeida AP (2001) Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668.  https://doi.org/10.1161/01.HYP.38.3.665 CrossRefPubMedGoogle Scholar
  10. 10.
    Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJH, Boomsma F, van Glist WH (2002) Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550.  https://doi.org/10.1161/01.CIR.0000013847.0035.B9 CrossRefPubMedGoogle Scholar
  11. 11.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walter T (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263.  https://doi.org/10.1073/pnas.1432869100 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Curtis-Prior P (2004) The eicosanoids. Wiley Ed, West SussexCrossRefGoogle Scholar
  13. 13.
    Gallagher PE, Cook K, Soto-Pantoja D, Menon J, Tallant EA (2011) Angiotensin peptides and lung cancer. Curr Cancer Drug Targets 11:394–404CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li W, Sun D, Lv Z, Wei Y, Zheng L, Zeng T, Zhao J (2017) Insulin-like growth factor binding protein-4 inhibits cell growth, migration and invasion, and downregulates COX-2 expression in A549 lung cancer cells. Cell Biol Int 4:384–391.  https://doi.org/10.1002/cbin.10732 CrossRefGoogle Scholar
  15. 15.
    Kalaitzidis RG, Elisaf MS (2017) Uncontrolled hypertension and oncology: clinical Τips. Curr Vasc Pharmacol.  https://doi.org/10.2174/1570161115666170414121436 PubMedGoogle Scholar
  16. 16.
    Katz JA (2013) COX-2 inhibition: what we learned—a controversial update on safety data. Pain Med Suppl 1:S29–S34.  https://doi.org/10.1111/pme.12252 CrossRefGoogle Scholar
  17. 17.
    McIntyre WF, Evans G (2014) The Vioxx® legacy: enduring lessons from the not so distant past. Cardiol J 21:203–205.  https://doi.org/10.5603/CJ.2014.0029 CrossRefPubMedGoogle Scholar
  18. 18.
    Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU (1998) Signal transduction mechanisms involved in angiotensin-(1-7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284:388–398PubMedGoogle Scholar
  19. 19.
    Passos-Silva DG, Verano-Braga T, Santos RA (2013) Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci (Lond) 124:443–456.  https://doi.org/10.1042/CS20120461 CrossRefGoogle Scholar
  20. 20.
    Patel VB, Bodiga S, Fan D, Das SK, Wang Z, Wang W, Basu R, Zhong J, Kassiri Z, Oudit GY (2012) Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension 59:1195–1203.  https://doi.org/10.1161/HYPERTENSIONAHA.112.191650 CrossRefPubMedGoogle Scholar
  21. 21.
    Papinska AM, Mordwinkin NM, Meeks CJ, Jadhav SS, Rodgers KE (2015) Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br J Pharmacol. 172:4443–4445.  https://doi.org/10.1111/bph.13225 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Galandrin S, Denis C, Boularan C, Marie J, M’Kadmi C, Pilette C, Dubroca C, Nicaise Y, Seguelas MH, N’Guyen D, Banères JL, Pathak A, Sénard JM, Galés C (2016) Cardioprotective angiotensin-(1-7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor. Hypertension 68:1365–1374CrossRefPubMedGoogle Scholar
  23. 23.
    Muñoz MC, Giani JF, Dominici FP (2010) Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regul Pept 161:1–7.  https://doi.org/10.1016/j.regpep.2010.02.001 CrossRefPubMedGoogle Scholar
  24. 24.
    Ni L, Feng Y, Wan H, Ma Q, Fan L, Qian Y, Li Q, Xiang Y, Gao B (2012) Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep 27:783–790.  https://doi.org/10.3892/or.2011.1554 PubMedGoogle Scholar
  25. 25.
    Zhang F, Ren X, Zhao M, Zhou B, Han Y (2016) Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep 6:34621.  https://doi.org/10.1038/srep34621 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K (2009) A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77:181–187.  https://doi.org/10.1016/j.diff.2008.10.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S, Philip PA, Sarkar FH (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS ONE 6:e17850.  https://doi.org/10.1371/journal.pone.0017850 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pham H, Rodriguez CE, Donald GW, Hertzer KM, Jung XS, Chang HH, Moro A, Reber HA, Hines OJ, Eibl G (2013) miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem Biophys Res Commun 439:6–11.  https://doi.org/10.1016/j.bbrc.2013.08.042 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu K, Yang L, Li C, Zhu CH, Wang X, Yao Y, Jia YJ (2014) MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev 15:5583–5586CrossRefPubMedGoogle Scholar
  30. 30.
    Da Silva W, Dos Santos RA, Moraes KC (2016) Mir-351–5p contributes to the establishment of a proinflammatory environment in the H9c2 cell line by repressing PTEN expression. Mol Cell Biochem 411:363–371.  https://doi.org/10.1007/s11010-015-2598-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158.  https://doi.org/10.1093/nar/gkm952 CrossRefPubMedGoogle Scholar
  32. 32.
    Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152CrossRefPubMedGoogle Scholar
  33. 33.
    Wiggins H, Rappoport J (2010) An agarose spot assay for chemotactic invasion. Biotechniques 48:120–123.  https://doi.org/10.2144/000113353 CrossRefGoogle Scholar
  34. 34.
    Verano-Braga T, Schwämmle V, Sylvester M, Passos-Silva DG, Peluso AA, Etelvino GM, Santos RA, Roepstorff P (2012) Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11:3370–3381.  https://doi.org/10.1021/pr3001755 CrossRefPubMedGoogle Scholar
  35. 35.
    Uddin S, Ahmed M, Hussain A, Assad L, Al-Dayel F, Bavi P, Al-Kuraya KS, Munkarah A (2010) Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer. Int J Cancer 126:382–394.  https://doi.org/10.1002/ijc.24757 CrossRefPubMedGoogle Scholar
  36. 36.
    McCollum LT, Gallagher PE, Tallant EA (2012) Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts. Peptides 34:380–388.  https://doi.org/10.1016/j.peptides.2012.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 20:642–655.  https://doi.org/10.1016/j.cell.2009.01.035 CrossRefGoogle Scholar
  38. 38.
    Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P (2010) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123:701–708.  https://doi.org/10.1007/s10549-009-0671-z CrossRefPubMedGoogle Scholar
  39. 39.
    Endaya B, Guan SP, Newman JP, Huynh H, Sia KC, Chong ST, Kok CYL, Chung AYF, Liu BB, Hui KM, Lam PYP (2017) Human mesenchymal stem cells preferentially migrate toward highly oncogenic human hepatocellular carcinoma cells with activated EpCAM signaling. Oncotarget.  https://doi.org/10.18632/oncotarget.17633 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Gaiser MR, Lämmermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN, Udey MC (2012) Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci USA 109:E889–E897.  https://doi.org/10.1073/pnas.1117674109 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Patriarca C, Macchi RM, Marschner AK, Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38:68–75.  https://doi.org/10.1016/j.ctrv.2011.04.002 CrossRefPubMedGoogle Scholar
  42. 42.
    Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, Shigdar S, Delprado W, Graham P, Bucci J, Kearsley J, Li Y (2013) Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol 45:2736–2748.  https://doi.org/10.1016/j.biocel.2013.09.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Xu Z, Wu R (2012) Alteration in metastasis potential and gene expression in human lung cancer cell lines by ITGB8 silencing. Anat Rec (Hoboken). 295:1446–1454.  https://doi.org/10.1002/ar.22521 CrossRefGoogle Scholar
  44. 44.
    Mertens-Walker I, Fernandini BC, Maharaj MS, Rockstroh A, Nelson CC, Herington AC, Stephenson SA (2015) The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of integrin-β8 in prostate cancer cells. BMC Cancer 15:164.  https://doi.org/10.1186/s12885-015-1164-6 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S, Marie JC, Travis MA (2015) Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential from suppression of T-cell-mediated inflammation. Immunity 42:903–915.  https://doi.org/10.1016/j.immuni.2015.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Del Rey MJ, Izquierdo E, Usategui A, Gonzalo E, Blanco FJ, Acquadro F, Pablos JL (2010) The transcriptional response of normal and rheumatoid arthritis synovial fibroblasts to hypoxia. Arthritis Rheum 62:3584–3594.  https://doi.org/10.1002/art.27750 CrossRefPubMedGoogle Scholar
  47. 47.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife.  https://doi.org/10.7554/eLife.05005 Google Scholar
  48. 48.
    Zhang X, Zhu J, Xing R, Tie Y, Fu H, Zheng X, Yu B (2012) miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer 77:488–494.  https://doi.org/10.1016/j.lungcan.2012.05.107 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Marina Bonfogo da Silveira
    • 1
  • Kelvin Furtado Lima
    • 2
  • Andrea Renata da Silva
    • 3
  • Robson Augusto Souza dos Santos
    • 4
  • Karen C. M. Moraes
    • 1
  1. 1.Laboratório de Biologia Molecular, Departamento de Biologia, Instituto de BiociênciasUniversidade Estadual Paulista “Júlio de Mesquita Filho”Rio ClaroBrazil
  2. 2.Instituto de QuímicaUniversidade Estadual Paulista “Júlio de Mesquita Filho”AraraquaraBrazil
  3. 3.Núcleo de Pesquisa em BiologiaUniversidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Laboratório de Fisiologia, Departmento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations