Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 177–186 | Cite as

Deguelin induces PUMA-mediated apoptosis and promotes sensitivity of lung cancer cells (LCCs) to doxorubicin (Dox)

  • Aimei Wang
  • Weina Wang
  • Yaqi Chen
  • Fengqiao Ma
  • Xiaoming Wei
  • Yongyi Bi


As a natural agent for chemotherapy, deguelin remarkably suppresses proliferation in numerous solid cancers. Nevertheless, the molecular mechanisms of its suppression are still insufficient. In our research, it was revealed that deguelin induced cell death of lung cancer cells (LCCs) by triggering expression of PUMA. Deguelin triggered PUMA induction independently of p53 via suppression of PI3K/AKT pathway, therefore stimulating Foxo3a to bind with PUMA promoter and stimulate its transcription. Subsequent to activation, PUMA motivated Bax as well as the intrinsic mitochondrial cell death pathway. Removal of PUMA from LCC cells led to deguelin resistance, suggesting deguelin-induced cell death was modulated by PUMA. Furthermore, we demonstrated that deguelin enhanced the chemotherapeutic sensitivity of doxorubicin in vitro and in vivo, which were associated with potentiated PUMA induction. Taken together, these results establish a critical role of PUMA in mediating the anticancer effects of deguelin in lung cancer cells and provide the rationale for clinical evaluation.


Deguelin Lung cancer PUMA Apoptosis Dox 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29. doi: 10.3322/caac.20138 CrossRefPubMedGoogle Scholar
  2. 2.
    DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252–271. doi: 10.3322/caac.21235 CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535–546. doi: 10.1038/nrc3775 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139. doi: 10.1056/NEJMoa040938 CrossRefPubMedGoogle Scholar
  5. 5.
    Tan CS, Gilligan D, Pacey S (2015) Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. Lancet Oncol 16:e447–e459. doi: 10.1016/S1470-2045(15)00246-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380. doi: 10.1056/NEJMra0802714 CrossRefPubMedGoogle Scholar
  7. 7.
    Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int J Cancer 129:2916–2927. doi: 10.1002/ijc.25949 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, Ma W, Zheng W (2013) Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol Clin Oncol 1:215–219. doi: 10.3892/mco.2012.36 CrossRefPubMedGoogle Scholar
  9. 9.
    Yoshitani SI, Tanaka T, Kohno H, Takashima S (2001) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by dietary capsaicin and rotenone. Int J Oncol 19:929–939PubMedGoogle Scholar
  10. 10.
    Li W, Gao F, Ma X, Wang R, Dong X, Wang W (2017) Deguelin inhibits non-small cell lung cancer via down-regulating hexokinases II-mediated glycolysis. Oncotarget 8:32586–32599. doi: 10.18632/oncotarget.15937 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Xu XD, Zhao Y, Zhang M, He RZ, Shi XH, Guo XJ, Shi CJ, Peng F, Wang M, Shen M, Wang X, Li X, Qin RY (2017) Inhibition of autophagy by deguelin sensitizes pancreatic cancer cells to doxorubicin. Int J Mol Sci. doi: 10.3390/ijms18020370 Google Scholar
  12. 12.
    Chen D, Wei L, Yu J, Zhang L (2014) Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis. Clin Cancer Res 20:3472–3484. doi: 10.1158/1078-0432.CCR-13-2944 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sun J, Knickelbein K, He K, Chen D, Dudgeon C, Shu Y, Yu J, Zhang L (2014) Aurora kinase inhibition induces PUMA via NF-κB to kill colon cancer cells. Mol Cancer Ther 13:1298–1308. doi: 10.1158/1535-7163.MCT-13-0846 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL, Grandis JR, Zhang L, Yu J (2009) PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene 28:2348–2357. doi: 10.1038/onc.2009.108 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nguyen MP, Lee D, Lee SH, Lee HE, Lee HY, Lee YM (2015) Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion. Oncotarget 6:16588–16600. doi: 10.18632/oncotarget.3752 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562. doi: 10.1038/nrc2664 CrossRefPubMedGoogle Scholar
  17. 17.
    Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4:a006783. doi: 10.1101/cshperspect.a006783 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Green S, Trejo CL, McMahon M (2015) PIK3CA(H1047R) accelerates and enhances KRAS(G12D)-driven lung tumorigenesis. Cancer Res 75:5378–5391. doi: 10.1158/0008-5472.CAN-15-1249 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee HY, Oh SH, Woo JK, Kim WY, Van Pelt CS, Price RE, Cody D, Tran H, Pezzuto JM, Moriarty RM, Hong WK (2005) Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst 97:1695–1699. doi: 10.1093/jnci/dji377 CrossRefPubMedGoogle Scholar
  20. 20.
    Chun KH, Kosmeder JW 2nd, Sun S, Pezzuto JM, Lotan R, Hong WK, Lee HY (2003) Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 95:291–302CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Gan B, Liu D, Paik JH (2011) FoxO family members in cancer. Cancer Biol Ther 12:253–259CrossRefPubMedGoogle Scholar
  22. 22.
    Gomes AR, Brosens JJ, Lam EW (2008) Resist or die: FOXO transcription factors determine the cellular response to chemotherapy. Cell Cycle 7:3133–3136. doi: 10.4161/cc.7.20.6920 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen J, Gomes AR, Monteiro LJ, Wong SY, Wu LH, Ng TT, Karadedou CT, Millour J, Ip YC, Cheung YN, Sunters A, Chan KY, Lam EW, Khoo US (2010) Constitutively nuclear FOXO3a localization predicts poor survival and promotes Akt phosphorylation in breast cancer. PLoS ONE 5:e12293. doi: 10.1371/journal.pone.0012293 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694CrossRefPubMedGoogle Scholar
  25. 25.
    Wang P, Yu J, Zhang L (2007) The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 104:4054–4059. doi: 10.1073/pnas.0700020104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ming L, Wang P, Bank A, Yu J, Zhang L (2006) PUMA dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells. J Biol Chem 281:16034–16042. doi: 10.1074/jbc.M513587200 CrossRefPubMedGoogle Scholar
  27. 27.
    Breen L, Heenan M, Amberger-Murphy V, Clynes M (2007) Investigation of the role of p53 in chemotherapy resistance of lung cancer cell lines. Anticancer Res 27:1361–1364PubMedGoogle Scholar
  28. 28.
    Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814CrossRefPubMedGoogle Scholar
  29. 29.
    Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M (2005) MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106:3150–3159. doi: 10.1182/blood-2005-02-0553 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Aimei Wang
    • 1
    • 2
  • Weina Wang
    • 2
  • Yaqi Chen
    • 2
  • Fengqiao Ma
    • 2
  • Xiaoming Wei
    • 2
  • Yongyi Bi
    • 1
  1. 1.School of Health SciencesWuhan UniversityWuhanChina
  2. 2.NanYang Medical CollegeNanyangChina

Personalised recommendations