Skip to main content
Log in

Purification and characterization of skeletal muscle pyruvate kinase from the hibernating ground squirrel, Urocitellus richardsonii: potential regulation by posttranslational modification during torpor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ground squirrel torpor during winter hibernation is characterized by numerous physiological and biochemical changes, including alterations to fuel metabolism. During torpor, many tissues switch from carbohydrate to lipid catabolism, often by regulating key enzymes within glycolytic and lipolytic pathways. This study investigates the potential regulation of pyruvate kinase (PK), a key member of the glycolytic pathway, within the skeletal muscle of hibernating ground squirrels. PK was purified from the skeletal muscle of control and torpid Richardson’s ground squirrels, and PK kinetics, structural stability, and posttranslational modifications were subsequently assessed. Torpid PK displayed a nearly threefold increase in K m PEP as compared to control PK when assayed at 5 °C. ProQ Diamond phosphoprotein staining as well as phospho-specific western blots indicated that torpid PK was significantly more phosphorylated than the euthermic control. PK from the torpid condition was also shown to possess nearly twofold acetyl content as compared to control PK. In conclusion, skeletal muscle PK from the Richardson’s ground squirrel may be regulated posttranslationally between the euthermic and torpid states, and this may inhibit PK functioning during torpor in accordance with the decrease in glycolytic rate during dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ljungstrom O, Hjelmquist G, Engstrom L (1974) Phosphorylation of purified rat liver pyruvate kinase by cyclic-3′,5′-AMP-stimulated protein kinase. Biochem Biophys Acta 358:289–298

    Google Scholar 

  2. Riou JP, Claus TH, Pilkis SJ (1978) Stimulation of glucagon of an in vivo phosphorylation of rat hepatic pyruvate kinase. J Biol Chem 253:656–659

    CAS  PubMed  Google Scholar 

  3. Storey KB (1987) Regulation of liver metabolism by enzyme phosphorylation during mammalian hibernation. J Biol Chem 262(4):1670–1673

    CAS  PubMed  Google Scholar 

  4. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular response to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  5. Zatzman ML (1984) Renal and cardiovascular effects of hibernation and hypothermia. Cryobiology 21(6):593–614

    Article  CAS  PubMed  Google Scholar 

  6. McArthur MD, Milsom WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64:940–959

    Article  Google Scholar 

  7. Van Breukelen F, Sonenberg N, Martin SL (2004) Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am J Physiol Regul Integr Comp Physiol 287:349–353

    Article  Google Scholar 

  8. MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na + K + ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    Article  CAS  PubMed  Google Scholar 

  9. South FE, House WA (1967) Energy metabolism in hibernation. In: Fisher KC, Dawe AR, Lyman CP, Schonbaum E, South FE (eds) Mammalian hibernation III. Oliver and Boyd, Ltd., Edinburgh, pp 305–324

    Google Scholar 

  10. Tashima LS, Adelstein SJ, Lyman CP (1970) Radioglucose utilization by active, hibernating, and arousing ground squirrels. Am J Physiol 218:303–309

    Article  CAS  PubMed  Google Scholar 

  11. Brooks SBJ, Storey KB (1992) Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis. J Comp Physiol B 162:23–28

    Article  CAS  Google Scholar 

  12. Brooks SPJ (1992) A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques 13:906–911

    CAS  PubMed  Google Scholar 

  13. Brooks SPJ (1994) A program for analyzing enzyme rate data obtained from a microplate reader. Biotechniques 17:1155–1161

    Google Scholar 

  14. Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Phys B 158:25–37

    Article  CAS  Google Scholar 

  15. Hochachka PW, Guppy M (1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge

    Book  Google Scholar 

  16. Hachimi ZE, Tijane M, Boissonnet G, Benjouad A, Desmadril M, Yon JM (1990) Regulation of the skeletal muscle metabolism during hibernation of Jaculus orientalis. Comp Biochem Physiol B 96(3):457–459

    Article  PubMed  Google Scholar 

  17. Abnous K, Storey KB (2008) Skeletal muscle hexokinase: regulation in mammalian hibernation. Mol Cell Biochem 319:41–50

    Article  CAS  PubMed  Google Scholar 

  18. Hall ER, Cottam GL (1978) Isozymes of pyruvate kinase in vertebrates: their physical, chemical kinetic and immunological properties. Int J Biochem 9:785–794

    Article  CAS  PubMed  Google Scholar 

  19. English TE, Storey KB (2000) Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog Cynomys leucurus. Arch Biochem Biophys 376:91–100

    Article  CAS  PubMed  Google Scholar 

  20. Dohm GL, Patel VK, Kasperek GJ (1986) Regulation of muscle pyruvate metabolism during exercise. Biochem Med Metabol Biol 35(3):260–266

    Article  CAS  Google Scholar 

  21. Storey KB, Kelly DA (1995) Glycolysis and energetics in organs of hibernating mice (Zapus hudsonius). Can J Zool 73:202–207

    Article  CAS  Google Scholar 

  22. Larson TM, Laughlin LT, Holden HM, Rayment I, Reed GH (1994) Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemisty 33(20):6301–6309

    Article  Google Scholar 

  23. Frey PA, Hegeman AD (2007) Phosphotransfer and nucleotidyltransfer. Enzymatic reaction mechanisms. Oxford University Press, New York, pp 495–496

    Google Scholar 

  24. MacDermott M (1990) The intracellular concentration of free magnesium in extensor digitorum longus muscles of the rat. Exp Physiol 75:763–769

    Article  CAS  PubMed  Google Scholar 

  25. Bijlani RL, Manjunatha S (2010) Membrane potential at rest and during activity. In: Understanding medical physiology: a textbook for medical students. Jaypee Brothers Medical Publishers Ltd. New Delhi, India p 118

  26. Willis JS, Goldman SS, Foster RF (1971) Tissue K concentration in relation to the role of the kidney in hibernation and the cause of periodic arousal. Comp Biochem Physiol A Physiol 39(3):437–445

    Article  CAS  Google Scholar 

  27. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6(2):195–210

    Article  CAS  PubMed  Google Scholar 

  28. Carbonell J, Marco R, Feliu JE, Sols A (1973) Pyruvate kinase: classes of regulatory isozymes in mammalian tissues. FEBS J 37:148–156

    CAS  Google Scholar 

  29. Smith CR, Knowles VL, Plaxton WC (2000) Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cell cultures. Eur J Biochem 267:4477–4486

    Article  CAS  PubMed  Google Scholar 

  30. Storey KB (1986) Aspartate activation of pyruvate kinase in anoxia tolerant molluscs. Comp Biochem Physiol B 83:807–812

    Article  Google Scholar 

  31. Storey KB (1989) Integrated control of metabolic rate depression via reversible phosphorylation of enzymes in hibernating mammals. In: Malan A, Canguilhem AB (eds) Living in the cold II Colloque INSERM. John Libbey Eurotext Ltd, Montrouge, pp 309–319

    Google Scholar 

  32. Whitwam RE, Storey KB (1991) Regulation of phosphofructokinase during estivation and anoxia in the land snail, Otala Lactea. Physiol Zool 64:595–610

    Article  CAS  Google Scholar 

  33. Ramnanan CJ, Storey KB (2006) Glucose-6-phosphate dehydrogenase regulation during hypometabolism. Biochem Biophys Res Commun 339:7–16

    Article  CAS  PubMed  Google Scholar 

  34. Titanji VPK, Zetterqvist O, Engstrom L (1976) Regulation in vitro of rat liver pyruvate kina se by phosphorylation-dephosphorylation reactions, catalyzed by cyclic-AMP dependent protein kinases and a histone phosphatase. Biochim Biophys Acta 422(1):98–108

    Article  CAS  PubMed  Google Scholar 

  35. Boivin P, Galand C, Estrada M (1980) Phosphorylation of human red cell and liver pyruvate kinase. Differences between liver and erythrocyte L-type subunits. Cell Mol Life Sci 36(8):900–901

    Article  CAS  Google Scholar 

  36. Fister P, Eigenbrodt E, Presek P, Reinacher M, Schoner W (1983) Pyruvate kinase type M2 is phosphorylated in the intact chicken liver cell. Biochem Biophys Res Commun 115(2):409–414

    Article  CAS  PubMed  Google Scholar 

  37. MacDonald MJ, Kowluru A (1985) Evidence for calcium enhanced phosphorylation of pyruvate kinase by pancreatic islets. Mol Cell Biochem 68(2):107–114

    CAS  PubMed  Google Scholar 

  38. Nakashima K, Fujii S, Kaku K, Kaneko T (1982) Calcium-calmodulin dependent phosphorylation of erythrocyte pyruvate kinase. Biochem Biophys Res Commun 104(1):285–289

    Article  CAS  PubMed  Google Scholar 

  39. Weernink PA, Rijksen G, van der Heijden MC, Staal GE (1990) Phosphorylation of pyruvate kinase type K in human gliomas by a cyclic adenosine 5′-monophosphate-independent protein kinase. Cancer Res 50(15):4604–4610

    CAS  PubMed  Google Scholar 

  40. Hitosugi T, Kang S, Vander Heiden MG, Chung T, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu T, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97):ra73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plaxton WC, Storey KB (1984) Phosphorylation in vivo of red-muscle pyruvate kinase from the channelled whelk, Busycotpus canaliculatum, in response to anoxic stress. Eur J Biochem 143:267–272

    Article  CAS  PubMed  Google Scholar 

  42. Cowan KJ, Storey KB (1999) Reversible phosphorylation of skeletal muscle pyruvate kinase and phosphofructokinase during estivation in the spadefoot toad, Scaphiopus couchii. Mol Cell Biochem 195:173–181

    Article  CAS  PubMed  Google Scholar 

  43. Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812

    CAS  PubMed  Google Scholar 

  44. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  46. Eigenbrodt E, Mostafa MA, Schoner W (1977) Inactivation of pyruvate kinase type M2 from chicken liver by phosphorylation, catalyzed by a cAMP-independent protein kinase. Hoppe Seylers Z Physiol Chem 358:1047–1055

    Article  CAS  PubMed  Google Scholar 

  47. Presek P, Reinacher M, Eigenbrodt E (1988) Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett 242(1):194–198

    Article  CAS  PubMed  Google Scholar 

  48. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan K (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walter L, Bienz M (1998) Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395(6701):521–525

    Article  CAS  Google Scholar 

  50. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwai AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496

    Article  CAS  PubMed  Google Scholar 

  51. Caron C, Boyault C, Knochbin S (2005) Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioassays 27(4):408–415

    Article  CAS  Google Scholar 

  52. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111(5):709–720

    Article  CAS  PubMed  Google Scholar 

  53. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xoing Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42(6):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (OPG6793) to K.B. Storey and by an NSERC CGS postgraduate scholarship to R.A.V. Bell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan A. V. Bell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, R.A.V., Storey, K.B. Purification and characterization of skeletal muscle pyruvate kinase from the hibernating ground squirrel, Urocitellus richardsonii: potential regulation by posttranslational modification during torpor. Mol Cell Biochem 442, 47–58 (2018). https://doi.org/10.1007/s11010-017-3192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3192-9

Keywords

Navigation