Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 189–197 | Cite as

Hsp90 regulation affects the treatment of glucocorticoid for pancreatitis-induced lung injury

  • Yan Zhao
  • Ren-Ping Xiong
  • Xing Chen
  • Ping Li
  • Ya-Lei Ning
  • Nan Yang
  • Yan Peng
  • Yu-Lin Jiang
  • Yuan-Guo Zhou
Article
  • 94 Downloads

Abstract

Glucocorticoids are commonly used for the treatment of pancreatitis and complicated acute lung injury and help to reduce the mortality rates of both. The effect of gene variants in heat shock protein 90 (Hsp90), a key chaperone molecule of the glucocorticoid receptor (GR), on the therapeutic effect of glucocorticoids is unclear. Our study aims to investigate the different susceptibility to glucocorticoid treatment in BALB/c and C57BL/6 mice carrying different Hsp90 genotypes in an animal model of pancreatitis-induced lung injury. Compared with BALB/c mice, C57BL/6 mice have lower mortality rates, decreased water content in their lungs, and a lower level of IL-1 beta in an animal model of acute pancreatitis. C57BL/6 mice show a greater therapeutic effect and increased GR binding activities with glucocorticoid responsive element compared to BALB/c mice after a 0.4 mg/kg dexamethasone (DEX) treatment. Treatment with a higher dose of DEX (4 mg/kg) significantly reduced mortality rates and increased GR-GRE binding activity in both strains of mice, and there was no significant difference between the two strains. DEX did not exert a protective role after geldanamycin, a specific inhibitor of Hsp90, was administered in both strains of mice. Our study revealed that Hsp90 gene variants are responsible for the greater therapeutic effect of DEX in C57BL/6 mice compared to BALB/c mice, which implies that combining DEX treatment with Hsp90 regulation would promote the efficiency of DEX and would be an effective way to alleviate the side effects of hormone therapy.

Keywords

Acute pancreatitis Acute lung injury Glucocorticoid receptor Heat shock protein 90 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant 30470988] and the Foundation for the Author of National Excellent Doctoral Dissertation of China [Grant 200156].

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.

References

  1. 1.
    Lerch MM, Albrecht E, Ruthenburger M, Mayerle J, Halangk W, Kruger B (2003) Pathophysiology of alcohol-induced pancreatitis. Pancreas 27:291–296CrossRefPubMedGoogle Scholar
  2. 2.
    Shen HY, Zhao Y, Chen XY, Xiong RP, Lu JL, Chen JF, Chen LY, Zhou YG (2010) Differential alteration of heat shock protein 90 in mice modifies glucocorticoid receptor function and susceptibility to trauma. J Neurotrauma 27:373–381. doi: 10.1089/neu.2009.0926 CrossRefPubMedGoogle Scholar
  3. 3.
    Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K (1995) Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur J Biochem 233:1–8CrossRefPubMedGoogle Scholar
  4. 4.
    Jibard N, Meng X, Leclerc P, Rajkowski K, Fortin D, Schweizer-Groyer G, Catelli MG, Baulieu EE, Cadepond F (1999) Delimitation of two regions in the 90-kDa heat shock protein (Hsp90) able to interact with the glucocorticosteroid receptor (GR). Exp Cell Res 247:461–474. doi: 10.1006/excr.1998.4375 CrossRefPubMedGoogle Scholar
  5. 5.
    Passarino G, Cavalleri GL, Stecconi R, Franceschi C, Altomare K, Dato S, Greco V, Luca Cavalli Sforza L, Underhill PA, de Benedictis G (2003) Molecular variation of human HSP90alpha and HSP90beta genes in Caucasians. Hum Mutat 21:554–555. doi: 10.1002/humu.9141 CrossRefPubMedGoogle Scholar
  6. 6.
    MacLean MJ, Llordella MM, Bot N, Picard D (2005) A yeast-based assay reveals a functional defect of the Q488H polymorphism in human Hsp90alpha. Biochem Biophys Res Commun 337:133–137. doi: 10.1016/j.bbrc.2005.09.025 CrossRefPubMedGoogle Scholar
  7. 7.
    Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969. doi: 10.1074/jbc.M505524200 CrossRefPubMedGoogle Scholar
  8. 8.
    Abe R, Shimosegawa T, Kikuchi Y, Kimura K, Nagasaki Y, Koizumi M, Toyota T (1996) The role of pituitary-adrenal counterregulation of inflammation in cerulein-induced pancreatitis: a comparison between Fischer and Lewis rats. Pancreas 12:280–285CrossRefPubMedGoogle Scholar
  9. 9.
    Ulett GC, Ketheesan N, Hirst RG (2000) Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei. Infect Immun 68:2034–2042CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gorelick FS (2016) Advances in pancreatology: 2016. Curr Opin Gastroenterol. doi: 10.1097/MOG.0000000000000299 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Malla SR, Karrman Mardh C, Gunther A, Mahajan UM, Sendler M, D’Haese J, Weiss FU, Lerch MM, Hansen MB, Mayerle J (2016) Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology. doi: 10.1016/j.pan.2016.07.005 PubMedGoogle Scholar
  12. 12.
    Thrower E, Husain S, Gorelick F (2008) Molecular basis for pancreatitis. Curr Opin Gastroenterol 24:580–585. doi: 10.1097/MOG.0b013e32830b10e6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cadepond F, Jibard N, Binart N, Schweizer-Groyer G, Segard-Maurel I, Baulieu EE (1994) Selective deletions in the 90 kDa heat shock protein (hsp90) impede hetero-oligomeric complex formation with the glucocorticosteroid receptor (GR) or hormone binding by GR. J Steroid Biochem Mol Biol 48:361–367CrossRefPubMedGoogle Scholar
  14. 14.
    Hurt DE, Suzuki S, Mayama T, Charmandari E, Kino T (2016) Structural analysis on the pathologic mutant glucocorticoid receptor ligand-binding domains. Mol Endocrinol 30:173–188. doi: 10.1210/me.2015-1177 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cain DW, Cidlowski JA (2015) Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab 29:545–556. doi: 10.1016/j.beem.2015.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang S, Lv C, Yang X, Han Z, Zhang S, Zhang J, Zong C, Gao L, Li L, Zhao Q, Li R, Yang Y, Yu F, Li X, Zhang P, Wei L (2015) Corticosterone mediates the inhibitory effect of restraint stress on the migration of mesenchymal stem cell to carbon tetrachloride-induced fibrotic liver by downregulating CXCR4/7 expression. Stem Cells Dev 24:587–596. doi: 10.1089/scd.2014.0243 CrossRefPubMedGoogle Scholar
  17. 17.
    Besedovsky L, Born J, Lange T (2014) Endogenous glucocorticoid receptor signaling drives rhythmic changes in human T-cell subset numbers and the expression of the chemokine receptor CXCR4. FASEB J 28:67–75. doi: 10.1096/fj.13-237958 CrossRefPubMedGoogle Scholar
  18. 18.
    Cao MH, Xu J, Cai HD, Lv ZW, Feng YJ, Li K, Chen CQ, Li YY (2015) p38 MAPK inhibition alleviates experimental acute pancreatitis in mice. Hepatobiliary Pancreat Dis Int 14:101–106CrossRefPubMedGoogle Scholar
  19. 19.
    Ramudo L, Yubero S, Manso MA, Sanchez-Recio J, Weruaga E, De Dios I (2010) Effects of dexamethasone on intercellular adhesion molecule 1 expression and inflammatory response in necrotizing acute pancreatitis in rats. Pancreas 39:1057–1063. doi: 10.1097/MPA.0b013e3181da0f3e CrossRefPubMedGoogle Scholar
  20. 20.
    Xu J, Huang B, Wang Y, Tong C, Xie P, Fan R, Gao Z (2016) Emodin ameliorates acute lung injury induced by severe acute pancreatitis through the up-regulated expressions of AQP1 and AQP5 in lung. Clin Exp Pharmacol Physiol 43:1071–1079. doi: 10.1111/1440-1681.12627 CrossRefPubMedGoogle Scholar
  21. 21.
    Han X, Wang Y, Chen H, Zhang J, Xu C, Li J, Li M (2016) Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury. Exp Ther Med 11:788–796. doi: 10.3892/etm.2016.2988 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    De Bosscher K, Vanden Berghe W, Haegeman G (2000) Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 109:16–22CrossRefPubMedGoogle Scholar
  23. 23.
    Abe R, Shimosegawa T, Kimura K, Abe T, Kashimura J, Koizumi M, Toyota T (1995) The role of endogenous glucocorticoids in rat experimental models of acute pancreatitis. Gastroenterology 109:933–943CrossRefPubMedGoogle Scholar
  24. 24.
    Li YY, Ochs S, Gao ZR, Malo A, Chen CJ, Lv S, Gallmeier E, Goke B, Schafer C (2009) Regulation of HSP60 and the role of MK2 in a new model of severe experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 297:G981–G989CrossRefPubMedGoogle Scholar
  25. 25.
    Lee J, Seo JH, Lim JW, Kim H (2010) Membrane proteome analysis of cerulein-stimulated pancreatic acinar cells: implication for early event of acute pancreatitis. Gut Liver 4:84–93. doi: 10.5009/gnl.2010.4.1.84 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li YY, Li XJ, Lv S, Li K, Li YN, Gao ZR, Feng JY, Chen CJ, Schaefer C (2010) Ascitic fluid and serum from rats with acute pancreatitis injure rat pancreatic tissues and alter the expression of heat shock protein 60. Cell Stress Chaperones 15:583–591. doi: 10.1007/s12192-010-0170-5 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ye R, Mareninova OA, Barron E, Wang M, Hinton DR, Pandol SJ, Lee AS (2010) Grp78 heterozygosity regulates chaperone balance in exocrine pancreas with differential response to cerulein-induced acute pancreatitis. Am J Pathol 177:2827–2836. doi: 10.2353/ajpath.2010.100368 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu Y, Zhou ZG, Chen KL, Zhou B, Yang L, Yan H, Li Y (2012) The ER chaperone GRP78 is associated with the severity of cerulein-induced pancreatic inflammation via regulating apoptosis of pancreatic acinar cells. Hepatogastroenterology 59:1670–1676. doi: 10.5754/hge12281 PubMedGoogle Scholar
  29. 29.
    Kim JN, Lee HS, Ryu SH, Kim YS, Moon JS, Kim CD, Chang IY, Yoon SP (2011) Heat shock proteins and autophagy in rats with cerulein-induced acute pancreatitis. Gut Liver 5:513–520. doi: 10.5009/gnl.2011.5.4.513 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Feng JY, Li YY (2010) Alteration and role of heat shock proteins in acute pancreatitis. J Dig Dis 11:277–283. doi: 10.1111/j.1751-2980.2010.00450.x CrossRefPubMedGoogle Scholar
  31. 31.
    Moretti AI, Rios EC, Soriano FG, de Souza HP, Abatepaulo F, Barbeiro DF, Velasco IT (2009) Acute pancreatitis: hypertonic saline increases heat shock proteins 70 and 90 and reduces neutrophil infiltration in lung injury. Pancreas 38:507–514. doi: 10.1097/MPA.0b013e31819fef75 CrossRefPubMedGoogle Scholar
  32. 32.
    Meng K, Liu Q, Dou Y, Huang Q (2013) Prior peritoneal lavage with hot 0.9% saline induces HSP70 expression and protects against cerulein-induced acute pancreatitis in rats. Mol Biol Rep 40:1443–1449. doi: 10.1007/s11033-012-2187-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Nakada S, Tsuneyama K, Kato I, Tabuchi Y, Takasaki I, Furusawa Y, Kawaguchi H, Fujimoto M, Goto H, Hikiami H, Kondo T, Takano Y, Shimada Y (2010) Identification of candidate genes involved in endogenous protection mechanisms against acute pancreatitis in mice. Biochem Biophys Res Commun 391:1342–1347. doi: 10.1016/j.bbrc.2009.12.047 CrossRefPubMedGoogle Scholar
  34. 34.
    Szabolcs A, Biczo G, Rakonczay Z, Tiszlavicz L, Halm G, Wittmann T, Takacs T (2009) Simultaneous proteosome inhibition and heat shock protein induction by bortezomib is beneficial in experimental pancreatitis. Eur J Pharmacol 616:270–274. doi: 10.1016/j.ejphar.2009.05.019 CrossRefPubMedGoogle Scholar
  35. 35.
    Lunova M, Zizer E, Kucukoglu O, Schwarz C, Dillmann WH, Wagner M, Strnad P (2012) Hsp72 overexpression accelerates the recovery from caerulein-induced pancreatitis. PLoS ONE 7:e39972. doi: 10.1371/journal.pone.0039972 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bamberger CM, Wald M, Bamberger AM, Schulte HM (1997) Inhibition of mineralocorticoid and glucocorticoid receptor function by the heat shock protein 90-binding agent geldanamycin. Mol Cell Endocrinol 131:233–240CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao Y, Shen HY, Chen XY, Xiong RP, Li P, Liu P, Yang N, Zhou YG (2010) Genetic variations of heat shock protein 84 in mice mediate cellular glucocorticoid response. Cell Physiol Biochem 25:359–366. doi: 10.1159/000303039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yan Zhao
    • 1
  • Ren-Ping Xiong
    • 1
  • Xing Chen
    • 1
  • Ping Li
    • 1
  • Ya-Lei Ning
    • 1
  • Nan Yang
    • 1
  • Yan Peng
    • 1
  • Yu-Lin Jiang
    • 1
  • Yuan-Guo Zhou
    • 1
  1. 1.Molecular Biology Center, The State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations