Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 127–138 | Cite as

PPAR-γ and Akt regulate GLUT1 and GLUT3 surface localization during Mycobacterium tuberculosis infection

Article

Abstract

The success of Mycobacterium tuberculosis (Mtb) as a pathogen stems from its ability to manipulate the host macrophage towards increased lipid biogenesis and lipolysis inhibition. Inhibition of lipolysis requires augmented uptake of glucose into the host cell causing an upregulation of the glucose transporters GLUT1 and GLUT3 on the cell surface. Mechanism behind this upregulation of the GLUT proteins during Mtb infection is hitherto unknown and demands intensive investigation in order to understand the pathways linked with governing them. Our endeavor to investigate some of the key proteins that have been found to be affected during Mtb infection led us to investigate host molecular pathways such as Akt and PPAR-γ that remain closely associated with the survival of the bacilli by modulating the localization of glucose transporters GLUT1 and GLUT3.

Keywords

Mycobacterium tuberculosis GLUT1 GLUT3 Akt PPAR-γ 

Abbreviations

GLUT1

Glucose transporter 1 also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1)

GLUT3

Glucose transporter 3, also known as solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3)

PPAR-γ

Peroxisome proliferator-activated receptor-γ

Notes

Acknowledgements

SD, RCR, and this work were financially supported by project grant from Department of Biotechnology, Government of India to KVS Rao’s lab (BT/PR3260/BRB/10/967/2011). Thanks to Dr. K. V. S. Rao, ICGEB, New Delhi, India, for critically reading the manuscript. Authors also thank Jyoti Singh for her help with confocal experiments.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest, and funding agency has no role in the designing of the experiments.

References

  1. 1.
    Lee AS, Burdeinick-Kerr R, Whelan SP (2014) A genome-wide small interfering RNA screen identifies host factors required for vesicular stomatitis virus infection. J Virol 88:8355–8360CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M (2013) Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. PLoS Pathog 9:e1003835CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S et al (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140:731–743CrossRefPubMedGoogle Scholar
  4. 4.
    Thornbrough JM, Hundley T, Valdivia R, Worley MJ (2012) Human genome-wide RNAi screen for host factors that modulate intracellular salmonella growth. PLoS ONE 7:e38097CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mehrotra P, Jamwal SV, Saquib N, Sinha N, Siddiqui Z, Manivel V et al (2014) Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog 10:e1004265CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stanley SA, Barczak AK, Silvis MR, Luo SS, Sogi K, Vokes M et al (2014) Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog 10:e1003946CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuijl C, Savage NDL, Marsman M, Tuin AW, Janssen L, Egan DA et al (2007) Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450:725–730CrossRefPubMedGoogle Scholar
  8. 8.
    Majai G, Sarang Z, Csomós K, Zahuczky G, Fésüs L (2007) PPARγ-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 37:1343–1354CrossRefPubMedGoogle Scholar
  9. 9.
    Szeles L, Torocsik D, Nagy L (2007) PPARgamma in immunity and inflammation: cell types and diseases. Biochem Biophys Acta 1771:1014–1030PubMedGoogle Scholar
  10. 10.
    Mahajan S, Dkhar HK, Chandra V, Dave S, Nanduri R, Janmeja AK et al (2012) Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J Immunol 188:5593–5603CrossRefPubMedGoogle Scholar
  11. 11.
    Szatmari I, Rajnavolgyi E, Nagy L (2006) PPARgamma, a lipid-activated transcription factor as a regulator of dendritic cell function. Ann N Y Acad Sci 1088:207–218CrossRefPubMedGoogle Scholar
  12. 12.
    Almeida PE, Carneiro AB, Silva AR, Bozza PT (2012) PPAR-γ expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing. PPAR Res 2012:383829CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252CrossRefPubMedGoogle Scholar
  14. 14.
    Liu L, Liu J, Niu G, Xu Q, Chen Q (2015) Mycobacterium tuberculosis 19-kDa lipoprotein induces Toll-like receptor 2-dependent peroxisome proliferator-activated receptor gamma expression and promotes inflammatory responses in human macrophages. Mol Med Rep 11:2921–2926CrossRefPubMedGoogle Scholar
  15. 15.
    Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao Kanury VS (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681CrossRefPubMedGoogle Scholar
  16. 16.
    Singh V, Kaur C, Chaudhary VK, Rao KVS, Chatterjee S (2015) M. tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation. Sci Rep 5:12906CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gonnella R, Santarelli R, Farina A, Granato M, D’Orazi G, Faggioni A et al (2013) Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. J. Exp Clin Cancer Res 32:79CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662CrossRefPubMedGoogle Scholar
  19. 19.
    Iida M, Brand TM, Campbell DA, Starr MM, Luthar N, Traynor AM et al (2013) Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biol Ther 14:481–491CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou B, He Y, Zhang X, Xu J, Luo Y, Wang Y et al (2010) Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 107:4573–4578CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Martinez-Neri PA, Lopez-Rincon G, Mancilla-Jimenez R, del Toro-Arreola S, Munoz-Valle JF, Fafutis-Morris M et al (2015) Prolactin modulates cytokine production induced by culture filtrate proteins of M. bovis through different signaling mechanisms in THP1 cells. Cytokine 71:38–44CrossRefPubMedGoogle Scholar
  22. 22.
    Maiti D, Bhattacharyya A, Basu J (2001) Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 276:329–333CrossRefPubMedGoogle Scholar
  23. 23.
    Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A et al (2007) Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 8:610–618CrossRefPubMedGoogle Scholar
  24. 24.
    Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G et al (2014) Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res 20:2226–2235CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gallay N, Dos Santos C, Cuzin L, Bousquet M, Simmonet Gouy V, Chaussade C et al (2009) The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia 23:1029–1038CrossRefPubMedGoogle Scholar
  26. 26.
    Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280:9058–9064CrossRefPubMedGoogle Scholar
  27. 27.
    Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC (2007) IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111:2101–2111CrossRefPubMedGoogle Scholar
  30. 30.
    Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86CrossRefPubMedGoogle Scholar
  32. 32.
    Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator-activated receptor(PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 66:733–739CrossRefPubMedGoogle Scholar
  33. 33.
    Chen F, Wang M, O’Connor JP, He M, Tripathi T, Harrison LE (2003) Phosphorylation of PPARgamma via active ERK1/2 leads to its physical association with p65 and inhibition of NF-kappabeta. J Cell Biochem 90:732–744CrossRefPubMedGoogle Scholar
  34. 34.
    Vergne I, Gilleron M, Nigou J (2014) Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 4:187PubMedGoogle Scholar
  35. 35.
    Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rangwala SM, Rhoades B, Shapiro JS, Rich AS, Kim JK, Shulman GI et al (2003) Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev Cell 5:657–663CrossRefPubMedGoogle Scholar
  38. 38.
    Von Knethen A, Brune B (2002) Activation of peroxisome proliferator-activated receptor gamma by nitric oxide in monocytes/macrophages down-regulates p47phox and attenuates the respiratory burst. J Immunol 169:2619–2626CrossRefGoogle Scholar
  39. 39.
    Rajaram MV, Brooks MN, Morris JD, Torrelles JB, Azad AK, Schlesinger LS (2010) Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J Immunol 185:929–942CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liao W, Nguyen MTA, Yoshizaki T, Favelyukis S, Patsouris D, Imamura T et al (2007) Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 293:E219–E227CrossRefPubMedGoogle Scholar
  41. 41.
    Standaert ML, Kanoh Y, Sajan MP, Bandyopadhyay G, Farese RV (2002) Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-λ, and glucose transport in 3T3/L1 adipocytes. Endocrinology 143:1705–1716CrossRefPubMedGoogle Scholar
  42. 42.
    Nugent C, Prins JB, Whitehead JP, Savage D, Wentworth JM, Chatterjee VK et al (2001) Potentiation of glucose uptake in 3T3-L1 adipocytes by PPARγ agonists is maintained in cells expressing a PPARγ dominant-negative mutant: evidence for selectivity in the downstream responses to PPARγ activation. Mol Endocrinol 15:1729–1738PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Immunology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations