Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 115–125 | Cite as

Circulating extracellular vesicles in the aging process: impact of aerobic exercise

  • Karine Bertoldi
  • Laura Reck Cechinel
  • Bruna Schallenberger
  • Giana Blume Corssac
  • Samuel Davies
  • Irene Clemes Külkamp Guerreiro
  • Adriane Belló-Klein
  • Alex Sander R. Araujo
  • Ionara Rodrigues Siqueira
Article
  • 317 Downloads

Abstract

Our aim was to investigate transitory and delayed exercise effects on serum extracellular vesicles (EVs) in aging process. Male Wistar rats of 3-, 21-, and 26-month old were allocated into exercised and sedentary groups. The exercise protocol consisted in a daily moderate treadmill exercise (20 min daily during 2 weeks). Trunk blood was collected 1 and 18 h after the last exercise session, and circulating EVs were obtained. CD63 levels and acetylcholinesterase (AChE) activity were used as markers of exosome, a subtype of EVs. In addition, the quantification of amyloid-β (Aβ) levels and the oxidative status parameters, specifically reactive species content, superoxide dismutase (SOD) activity, and SOD1 content were evaluated. Aged rats showed reduced CD63 levels and increased AChE activity in circulating exosomes compared to young ones. Moreover, higher reactive species levels were found in circulating EVs of aged rats. Delayed exercise effects were observed on peripheral EVs, since CD63, reactive species content, and AChE activity were altered 18 h after the last exercise session. Our results suggest that the healthy aging process can modify circulating EVs profile, and exercise-induced beneficial effects may be related to its modulation on EVs.

Keywords

Circulating extracellular vesicles Exosomes Aging Reactive species content Rats Treadmill exercise 

Notes

Acknowledgements

This work received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Grant #No. 476634/2013-01). Dr. I.R. Siqueira; K. Bertoldi; L.R. Cechinel; B. Schallenberger received CNPq fellowships. The authors would like to acknowledge Prof. Adriana Pohlmann for providing access to Nanosight LM10-HS Instrument.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rajendran L, Bali J, Barr MM, Krämer-Albers EM, Picou F, Raposo G, van der Vos KE, van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482–15489. doi: 10.1523/jneurosci.3258-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases. Front Physiol 3:1–10. doi: 10.3389/fphys.2012.00124 CrossRefGoogle Scholar
  3. 3.
    Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115. doi: 10.1074/jbc.M112.404467 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881. doi: 10.1111/j.1600-0854.2008.00734.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflamm 11:68. doi: 10.1186/1742-2094-11-68 CrossRefGoogle Scholar
  6. 6.
    Lee Y, Andaloussi SE, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134. doi: 10.1093/hmg/dds317 CrossRefPubMedGoogle Scholar
  7. 7.
    Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R (2012) Emerging role of neuronal exosomes in the central nervous system. Front Physiol 3:1–6. doi: 10.3389/fphys.2012.00145 CrossRefGoogle Scholar
  8. 8.
    Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer Dement 11:600–607. doi: 10.1016/j.jalz.2014.06.008 CrossRefGoogle Scholar
  9. 9.
    Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68:7864–7871. doi: 10.1158/0008-5472 CrossRefPubMedGoogle Scholar
  10. 10.
    Fröhlich D, Kuo WP, Frühbeis C, Sun JJ, Zehendner CM, Luhmann HJ, Pinto S, Toedling J, Trotter J, Krämer-Albers EM (2014) Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Phil Trans R Soc B 369:1–13. doi: 10.1098/rstb.2013.0510 CrossRefGoogle Scholar
  11. 11.
    Azevedo LC, Janiszewski M, Pontieri V, Pedro MA, Bassi E, Tucci PJ, Laurindo FR (2007) Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care Med 11:R120. doi: 10.1186/cc6176 Google Scholar
  12. 12.
    Janiszewski M, Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med 32:818–825. doi: 10.1097/01.CCM.0000114829.17746.19 CrossRefPubMedGoogle Scholar
  13. 13.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neruochem 59:1609–10623CrossRefGoogle Scholar
  14. 14.
    Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23:663–671. doi: 10.1016/j.ijdevneu.2005.03.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W (2015) Effects of physical activity on life expectancy with cardiovascular disease. Arch Int Med 165:2355–2360. doi: 10.1001/archinte.165.20.2355 CrossRefGoogle Scholar
  16. 16.
    Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, Milani RV, Blair SN, Church TS (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J J77:281–292CrossRefGoogle Scholar
  17. 17.
    Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT (2002) Exercise, experience and the aging brain. Neurobiol Aging 23:941–955. doi: 10.1016/S0197-4580(02)00028-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen C, Huang T, Chen S, Jen C, Kuo Y (2015) Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol Learn Mem 118:189–197. doi: 10.1016/j.nlm.2014.12.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesic 4:1–11. doi: 10.3402/jev.v4.28239 Google Scholar
  20. 20.
    Hammeren J, Powers S, Lawler J, Criswell D, Martin D, Lowenthal D, Pollock M (1992) Exercise training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats. Int J Sports Med 13:412–416. doi: 10.1055/s-2007-1021290 CrossRefPubMedGoogle Scholar
  21. 21.
    Radák Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvári M, Nyakas C, Goto S (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23. doi: 10.1016/S0197-0186(00)00063-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Cechetti F, Fochesatto C, Scopel D, Nardin P, Gonçalves CA, Netto CA, Siqueira IR (2008) Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus. Brain Res 1188:182–188. doi: 10.1016/j.brainres.2007.10.012 CrossRefPubMedGoogle Scholar
  23. 23.
    Elsner VR, Lovatel GA, Moysés F, Bertoldi K, Spindler C, Cechinel LR, Muotri AR, Siqueira IR (2013) Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 48:136–139. doi: 10.1016/j.exger.2012.11.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, dos Santos Moysés F, Vizuete A, Spindler C, Cechinel LR, Netto CA, Muotri AR, Siqueira IR (2013) Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 101:94–102. doi: 10.1016/j.nlm.2013.01.007 CrossRefPubMedGoogle Scholar
  25. 25.
    Spindler C, Cechinel LR, Basso C, Moysés F, Bertoldi K, Roesler R, Lovatel GA, Elsner VR, Siqueira IR (2014) Treadmill exercise alters histone acetyltransferases and histone deacetylases activities in frontal cortices from wistar rats. Cell Mol Neurobiol 34:1097–1101. doi: 10.1007/s10571-014-0096-z CrossRefPubMedGoogle Scholar
  26. 26.
    Takahashi H, Fukumoto H, Maeda R, Terauchi J, Kato K, Miyamoto M (2010) Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Aβ peptide levels and impaired learning behavior in aged rats. Brain Res 1361:146–156. doi: 10.1016/j.brainres.2010.09.032 CrossRefPubMedGoogle Scholar
  27. 27.
    Scopel D, Fochesatto C, Cimarosti H, Rabbo M, Belló-Klein A, Salbego C, Netto CA, Siqueira IR (2006) Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 71:155–159. doi: 10.1016/j.brainresbull.2006.08.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Davidson SM, Takov K, Yellon DM (2017) Exosomes and cardiovascular protection. Cardiovas Drug Ther 31:77–86. doi: 10.1007/s10557-016-6698-6 CrossRefGoogle Scholar
  29. 29.
    Eitan E, Green J, Bodogai M, Mode NA, Bæk R, Jørgensen MM, Freeman DW, Witwer KW, Zonderman AB, Biragyn A, Mattson MP, Noren Hooten N, Evans MK (2017) Age-related changes in plasma extracellular vesicle characteristics and internalization by leukocytes. Sci Rep 7:1342. doi: 10.1038/s41598-017-01386-z CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  31. 31.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  32. 32.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. doi: 10.1021/tx00026a012 CrossRefPubMedGoogle Scholar
  33. 33.
    Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Mol Cell Biochem 36:59–66Google Scholar
  34. 34.
    Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lötvall J, Hwang D, Gho YS (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesic 19:1–7. doi: 10.3402/jev.v2i0.20384 Google Scholar
  35. 35.
    Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115:2505–2515PubMedGoogle Scholar
  36. 36.
    Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC (2015) Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 19:2153–2161. doi: 10.1111/jcmm.12589 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Weinreb O, Amit T, Bar-Am O, Youdim MB (2015) Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer’s disease. Br J Pharmacol. doi: 10.1111/bph.13318 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Haider S, Saleem S, Perveen T, Tabassum S, Batool Z, Sadir S, Liaquat L, Madiha S (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 36:1291–1302. doi: 10.1007/s11357-014-9653-0 CrossRefGoogle Scholar
  39. 39.
    Lakhal S, Wood MJ (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery. BioEssays 33:737–741. doi: 10.1002/bies.201100076 CrossRefPubMedGoogle Scholar
  40. 40.
    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi: 10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Johnstone RM, Mathew A, Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147:27–36. doi: 10.1002/jcp.1041470105 CrossRefPubMedGoogle Scholar
  42. 42.
    Mendelsohn AR, Larrick JW (2013) Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuv Res 16:518–523. doi: 10.1089/rej.2013.1530 CrossRefGoogle Scholar
  43. 43.
    Terman A, Brunk UT (2004) Aging as a catabolic malfunction. Int J Biochem Cell Biol 36:2365–2375. doi: 10.1016/j.biocel.2004.03.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Johnstone RM, MathewA Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147:27–36. doi: 10.1002/jcp.1041470105 CrossRefPubMedGoogle Scholar
  45. 45.
    Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, Kimura N, Okada M, Tahara H, Furukawa J, Fulitani N, Shinohara Y, Fujitani N (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett 589:84–88. doi: 10.1016/j.febslet.2014.11.027 CrossRefPubMedGoogle Scholar
  46. 46.
    Gambim MH, Do Carmo ADO, Marti L, Veríssimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care Med 11:1–12. doi: 10.1186/cc6133 Google Scholar
  47. 47.
    Halliwell B (1975) The superoxide dismutase activity of iron complexes. FEBS Lett 5:34–38. doi: 10.1016/0014-5793(75)80105-0 CrossRefGoogle Scholar
  48. 48.
    Liu J, Mori A (1993) Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 71:23–30. doi: 10.1016/00476374(93)90032-M CrossRefPubMedGoogle Scholar
  49. 49.
    Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ, Cashman NR (2016) Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 36(3):377–381CrossRefPubMedGoogle Scholar
  50. 50.
    Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Nagai Y (2015) Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci 112(19):E2497–E2506CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451CrossRefPubMedGoogle Scholar
  52. 52.
    Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J-proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X, Lui Y (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 1592:65–72CrossRefPubMedGoogle Scholar
  54. 54.
    Yao L, Liu Z, Zhu J, Li B, Chai C, Tian Y (2015) Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol 8(7):7675PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yi H, Huang Y, Yang F, Liu W, He S, Hu X (2017) MicroRNA-182 aggravates cerebral ischemia injury by targeting inhibitory member of the ASPP family (iASPP). Arch Biochem Biophys 620:52–58CrossRefPubMedGoogle Scholar
  56. 56.
    Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517. doi: 10.1038/nrendo.2016.76 CrossRefPubMedGoogle Scholar
  57. 57.
    Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536. doi: 10.1016/j.jacc.2015.02.026 CrossRefPubMedGoogle Scholar
  58. 58.
    Giric Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzás EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78CrossRefGoogle Scholar
  59. 59.
    Fraile-Bermúdez AB, Kortajarena M, Zarrazquin I, Maquibar A, Yanguas JJ, Sánchez-Fernández CE, Gil S, Irazutas A, Ruiz-Litago F (2015) Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals. Exp Gerontol 70:26–31. doi: 10.1016/j.exger.2015.07.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickening G, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98:94–106. doi: 10.1093/cvr/cvt013 CrossRefPubMedGoogle Scholar
  61. 61.
    Samadi A, Estrada M, Pérez C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Marco-Contelles J (2012) Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease: synthesis, biological assessment, and molecular modeling. Eur J Med Chem 57:296–301. doi: 10.1016/j.ejmech.2012.09.030 CrossRefPubMedGoogle Scholar
  62. 62.
    Yang RY, Zhao G, Wang DM, Pang XC, Wang SB, Fang JS, Du GH (2015) DL0410 can reverse cognitive impairment, synaptic loss and reduce plaque load in APP/PS1 transgenic mice. Pharmacol Biochem B 139:15–26. doi: 10.1016/j.pbb.2015.10.009 CrossRefGoogle Scholar
  63. 63.
    Jolitha AB, Subramanyam MVV, Devi AS (2009) Age-related responses of the rat cerebral cortex: influence of vitamin E and exercise on the cholinergic system. Biogerontology 10:53–63. doi: 10.1007/s10522-008-9154-6 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim G, Kim E (2013) Effects of treadmill training on limb motor function and acetylcholinesterase activity in rats with stroke. J Phys Ther Sci 25:1227–1230. doi: 10.1589/jpts.25.1227 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Madden LA, Vince RV, Sandstrom ME, Taylor L, McNaughton L, Laden G (2008) Microparticle-associated vascular adhesion molecule-1 and tissue factor follow a circadian rhythm in healthy human subjects. Thromb Haemostasis 99(5):909Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Karine Bertoldi
    • 1
  • Laura Reck Cechinel
    • 1
  • Bruna Schallenberger
    • 2
  • Giana Blume Corssac
    • 1
    • 4
  • Samuel Davies
    • 3
  • Irene Clemes Külkamp Guerreiro
    • 3
  • Adriane Belló-Klein
    • 1
    • 4
  • Alex Sander R. Araujo
    • 1
    • 4
  • Ionara Rodrigues Siqueira
    • 1
    • 2
    • 5
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: FisiologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Farmacologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations