Advertisement

Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 105–113 | Cite as

Eryptosis and oxidative damage in hypertensive and dyslipidemic patients

  • Carmen Elisa Pinzón-Díaz
  • José Víctor Calderón-Salinas
  • Margarita Marcela Rosas-Flores
  • Gerardo Hernández
  • Alicia López-Betancourt
  • Martha Angélica Quintanar-Escorza
Article

Abstract

Arterial hypertension is a disease that often coexists with dyslipidemia. Both disorders can produce oxidative stress. Studies in vivo and in vitro have proven that oxidative stress can induce an increment of the erythrocyte apoptosis (eryptosis), through the rise of free intracellular calcium concentration ([Ca2+]i). Higher levels of eryptosis have not been described in patients with hypertension, dyslipidemia, or both combined. This study involved 81 men between 26 and 50 years old, assorted into four groups: normotensive with and without dyslipidemia, and hypertensive with and without dyslipidemia. Hypertensive and/or dyslipidemic patients had double mean lipid peroxidation and 30% less mean GSH concentration than the normotensive non-dyslipidemic patients. Mean [Ca2+]i in hypertensive patients was 100 and 200% higher, in patients without and with dyslipidemia, respectively, compared to normotensive patients. Dyslipidemic normotensive patients had three times higher mean PS externalization than the normotensive non-dyslipidemic patients, and the hypertension condition doubled this difference. Hypertensive patients had higher eryptosis associated with higher levels of [Ca2+]i and oxidative stress, suggesting that eryptosis participates in the pathophysiological mechanisms of hypertension. The quantitative analysis, when the dyslipidemic factor is included, shows that oxidative stress–[Ca2+]i–eryptosis do not follow a unique pattern in the different groups and suggests the existence of mechanisms of induction and molecular pathways alternative or additional to oxidative stress and [Ca2+]i, respectively.

Keywords

Erythrocytes Hypertension Oxidation Calcium 

References

  1. 1.
    World Health Organization (2013) Global brief on hypertension—silent killers, global public health crisis, World health day 2013. http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf?ua=1
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussoli-no ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2012) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245. doi: 10.1161/CIR.0b013e31823ac046 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. doi: 10.1056/NEJM199807233390404 CrossRefPubMedGoogle Scholar
  4. 4.
    Davy KP, Hall JE (2004) Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol 286(5):R803–R813. doi: 10.1152/ajpregu.00707.2003 CrossRefPubMedGoogle Scholar
  5. 5.
    Dalal JJ, Padmanabhan TNC, Jain P, Patil S, Vasnawala H, Gulati A (2012) Lipitension: interplay between dyslipidemia and hypertension. Indian J Endocrinol Metab 16(2):240–245. doi: 10.4103/2230-8210.93742 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D (2011) ESC/EAS guidelines for the management of dyslipidemias. Eur Heart J 32:1769–1818. doi: 10.1093/eurheartj/ehr158 CrossRefPubMedGoogle Scholar
  7. 7.
    Halperin RO, Sesso HD, Jing M, Buring JE, Stampfer MJ, Gaziano M (2006) Dyslipidemias and the risk of incident hypertension in men. Hypertension 47(1):45–50. doi: 10.1161/01.HYP.0000196306.42418.0e CrossRefPubMedGoogle Scholar
  8. 8.
    Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension. What is the clinical significance? Hypertension 44(3):248–252. doi: 10.1161/01.HYP.0000138070.47616.9d CrossRefPubMedGoogle Scholar
  9. 9.
    Minuz P, Patrignani P, Gaino S, Seta F, Capone M, Tacconelli S, Degan M, Faccini G, Fornasiero A, Talamini G, Tommasoli R, Arosio E, Santonastaso C, Lechi A, Patrono C (2004) Determinants of platelet activation in human essential hypertension. Hypertension 43:64–70. doi: 10.1161/01.HYP.0000105109.44620.1B CrossRefPubMedGoogle Scholar
  10. 10.
    Grossman E (2008) Does increase oxidative stress cause hypertension? Diabetes Care 31:2. doi: 10.2337/dc08-s246 CrossRefGoogle Scholar
  11. 11.
    Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bachler JP (2007) Relation between oxidative stress and essential hypertension. Hypertens Res 30(12):1159–1167. doi: 10.1291/hypres.30.1159 CrossRefPubMedGoogle Scholar
  12. 12.
    Cvetkovic T, Velickovic- Radovanovic R, Djordjevic V, Radenkovic S, Vlahovic P, Stefanovic N (2012) Evidences for oxidative stress in essential hypertension. Cent Eur J 7(5):610–616. doi: 10.2478/s11536-012-0043-7 Google Scholar
  13. 13.
    Ward NC, Hodgson JM, Puddey IB, Mori TA, Beilin LJ, Croft KD (2004) Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic Biol Med 36:226–232. doi: 10.1016/j.freeradbiomed.2003.10.021 CrossRefPubMedGoogle Scholar
  14. 14.
    Lima Vasconcelos S, Fonseca Goulart M, Mendoca da Silva M, Manfredini V, Benfato M, Antas Rabelo L, Fontes G (2011) Markers of redox imbalance in the blood of hypertensive patients of a community in Northeastern Brazil. Arq Bras Cardiol 97(2):141–147. doi: 10.1590/S0066-782X2011001100008 Google Scholar
  15. 15.
    Muda P, Kampus P, Zilmer M, Zilmer K, Kairane C, Ristimae T, Fischer K, Teesalau R (2003) Homocysteine and red blood cell glutathione as indices for the middle. Aged untreated essential hypertension patients. J Hypertens 21:2329–2333. doi: 10.1097/01.hjh.0000098158.70956.85 CrossRefPubMedGoogle Scholar
  16. 16.
    Redón J, Oliva M, Tormos C, Giner V, Chaves J, Iradi R, Sáez G (2003) Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41:1096–1101. doi: 10.1161/01.HYP.0000068370.21009.38 CrossRefPubMedGoogle Scholar
  17. 17.
    Shantha Kumari N, Hemalatha, Sheethal KC, Shwetha, Rashmi TM (2013) Antioxidant status, oxidative stress and lipid profile in essential hypertensive men. JEMDS 2(17):2950–2955. doi: 10.14260/jemds/640 CrossRefGoogle Scholar
  18. 18.
    Rybka J, Kupczyk D, Kedziora-Kornatowska K, Motyl J, Czuczejko J, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Carvalho LA, Kedziora J (2011) Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc Toxicol 11:1–9. doi: 10.1007/s12012-010-9096-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330–e341. doi: 10.1016/j.orcp.2013.05.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. doi: 10.4239/wjd.v6.i3.456 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wiede T, Lang F (2003) Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 14(11):2750–2757. doi: 10.1097/01.ASN.0000093253.42641.C1 CrossRefPubMedGoogle Scholar
  22. 22.
    Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15(5):195–202. doi: 10.1159/000086406 CrossRefPubMedGoogle Scholar
  23. 23.
    Lang E, Lang F (2015) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed Res Int 2015(2015):513–518. doi: 10.1155/2015/513518 Google Scholar
  24. 24.
    Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, Attanasio P, Akel A, Schafer R, Friedrich B, Risler T, Baur M, Olbricht CJ, Zimmerhackl LB, Zipfel PF, Wieder T, Lang F (2006) Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84(5):378–388. doi: 10.1007/s00109-006-0058-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Aguilar-Dorado IC, Hernández G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flóres M, Calderón-Salinas JV (2014) Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol 281(2):195–202. doi: 10.1016/j.taap.2014.10.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Calderón-Salinas JV, Muñoz-Reyes EG, Guerrero-Romero JF, Morán Rodríguez-, Bracho-Riquelme MRL, Carrera-Gracia MA, Quintanar-Escorza MA (2011) Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem 357(1–2):171–179. doi: 10.1007/s11010-011-0887-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Lindner A, Hinds TR, Davidson RC, Vicenzi FF (1993) Increased cytosolic free calcium in red blood cells is associated with essential hypertension in humans. Am J Hypertens 6(9):771–779. doi: 10.1093/ajh/6.9.771 CrossRefPubMedGoogle Scholar
  28. 28.
    Lang F, Qadri SM (2012) Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 33(1–3):125–130CrossRefPubMedGoogle Scholar
  29. 29.
    Lang E, Bissinger R, Gulbins E, Lang F (2015) Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 5:758–767. doi: 10.1007/s10495-015-1094-4 CrossRefGoogle Scholar
  30. 30.
    Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al (2003) The National High Blood Pressure Education Program Coordinating Committee. Seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252CrossRefGoogle Scholar
  31. 31.
    Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38(12):1539–1543. doi: 10.2337/diab.38.12.1539 CrossRefPubMedGoogle Scholar
  32. 32.
    Quintanar-Escorza MA, González-Martínez MT, Navarro L, Maldonado M, Arévalo B, Calderón-Salinas JV (2007) Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers. Toxicol Appl Pharmacol 220:1–8. doi: 10.1016/j.taap.2006.10.016 CrossRefPubMedGoogle Scholar
  33. 33.
    Rendón-Ramírez AL, Maldonado-Vega M, Quintanar-Escorza MA, Hernández G, Arévalo-Rivas BI, Zentella-Dehesa A, Calderón-Salinas JV (2014) Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environ Toxicol Pharmacol 37(1):45–54. doi: 10.1016/j.etap.2013.10.016 CrossRefPubMedGoogle Scholar
  34. 34.
    Akerboom TPM, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382. doi: 10.1016/S0076-6879(81)77050-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Tait JF, Gibson D (1992) Phospholipid binding of annexin V: effects of calcium and membrane phosphatidylserine content. Arch Biochem Biophys 298:187–191. doi: 10.1016/0003-9861(92)90111-9 CrossRefPubMedGoogle Scholar
  36. 36.
    R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  37. 37.
    Mair P, Schoenbrodt F, Wilcox R (2015) WRS2: Wilcox robust estimation and testingGoogle Scholar
  38. 38.
    Hennig C (2015) fpc: flexible procedures for clustering. R package version 2.1-10. https://CRAN.R-project.org/package=fpc
  39. 39.
    Deoghare S, Kantharia N (2013) Effect of atenolol and enalapril treatment on oxidative stress parameters in patients with essential hypertension. Int J Basic Clin Pharmacol 2(3):252–256. doi: 10.5455/2319-2003.ijbcp20130604 CrossRefGoogle Scholar
  40. 40.
    Donmez G, Derici U, Erbas D, Arinsoy T, Onk A, Sindel S, Hasanoglu E (2002) The effects of losartan and enalapril therapies on the levels of nitric oxide, malondialdehyde, and glutathione in patients with essential hypertension. Jpn J Physiol 52:435–440. doi: 10.2170/jjphysiol.52.435 CrossRefPubMedGoogle Scholar
  41. 41.
    Chandran G, Sirajudeen K, Yussof N, Swany M, Samarendra M (2014) Effect of the antihypertensive drug enalapril on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat. Oxid Med Cell Longev. doi: 10.1155/2014/608512 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gómez-García A, Martínez Torres G, Ortega-Pierres L, Rodríguez-Ayala E, Álvarez-Aguilar C (2007) Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia. Rev Esp Cardiol 60(12):1242–1249 CrossRefPubMedGoogle Scholar
  43. 43.
    Maurya PK, Kumar P, Chandra P (2015) Biomarkers of oxidative stress in erythrocytes as a function of human age. World J Methodol 5(4):216–222. doi: 10.5662/wjm.v5.i4.216 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pandey KB, Rizvi SI (2011) Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(2):131–136CrossRefPubMedGoogle Scholar
  45. 45.
    Bashar T, Akhter N (2014) Study on oxidative stress and antioxidant level in patients with acute myocardial infarction before and after regular treatment. Bangladesh Med Res Counc Bull 40:79–84. doi: 10.13140/RG.2.1.4062.2481 CrossRefPubMedGoogle Scholar
  46. 46.
    Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F, Wieder T, Huber SM (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10(2):249–256. doi: 10.1038/sj.cdd.4401144 CrossRefPubMedGoogle Scholar
  47. 47.
    Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39(5):1977–2000CrossRefPubMedGoogle Scholar
  48. 48.
    Calderón-Salinas JV, Quintanar-Escorza MA, Hernández-Luna CE, González-Martínez MT (1999) Effect of lead on the calcium transport in human erythrocyte. Hum Exp Toxicol 18(3):146–153CrossRefPubMedGoogle Scholar
  49. 49.
    Adrogué H, Madias N (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978. doi: 10.1056/NEJMra064486 CrossRefPubMedGoogle Scholar
  50. 50.
    Mayet J, Hughes A (2003) Cardiac and vascular pathophysiology in hypertension. Heart 89:1104–1109. doi: 10.1136/heart.89.9.1104 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gottlieb MH (1980) Rates of cholesterol exchange between human erythrocytes and plasma lipoproteins. Biochim Biophys Acta 600:530–541CrossRefPubMedGoogle Scholar
  52. 52.
    Van Zwieten R, Bochem A, Hilarius P, Van Bruggen R, Bergkamp F, Hovingh G, Verhoeven A (2012) The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim Biophys Acta 1821(12):1493–1500. doi: 10.1016/j.bbalip.2012.08.008 CrossRefPubMedGoogle Scholar
  53. 53.
    Arashiki N, Saito M, Koshino I, Kamata K, Hale J, Mohandas N, Manno S, Takakuwa Y (2016) An unrecognized function of cholesterol: regulating the mechanism controlling membrane phospholipid asymmetry. Biochemistry 55:3504–3513. doi: 10.1021/acs.biochem.6b00407 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Arca M, Natoli S, Micheletta F, Riggi S, Di Angelantonio E, Montali A, Antonini TM, Antonini R, Diczfalusy U, Iuliano L (2007) Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Radic Biol Med 42(5):698–705CrossRefPubMedGoogle Scholar
  55. 55.
    Tesoriere L, Attanzio A, Allegra M, Cilla A, Gentile C, Livrea M (2014) Oxysterol mixture in hypercholesterolemia-relevant proportion causes oxidative stress-dependent eryptosis. Cell Physiol Biochem 34:1075–1089. doi: 10.1159/000366322 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Carmen Elisa Pinzón-Díaz
    • 1
  • José Víctor Calderón-Salinas
    • 2
  • Margarita Marcela Rosas-Flores
    • 2
  • Gerardo Hernández
    • 3
  • Alicia López-Betancourt
    • 4
  • Martha Angélica Quintanar-Escorza
    • 1
  1. 1.Faculty of MedicineUJEDDurangoMexico
  2. 2.Biochemistry DepartmentCentro de Investigación y Estudios Avanzados IPNMexico CityMexico
  3. 3.Section of Methodology of ScienceCentro de Investigación y Estudios Avanzados IPNMexico CityMexico
  4. 4.Faculty of Exact SciencesUJEDDurangoMexico

Personalised recommendations