Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 89–104 | Cite as

Cellular and molecular oxidative stress-related effects in uterine myometrial and trophoblast-decidual tissues after perigestational alcohol intake up to early mouse organogenesis

  • Tamara Anahí Coll
  • Gabriela Chaufan
  • Leticia Gabriela Pérez-Tito
  • Martín Ricardo Ventureira
  • María del Carmen Ríos de Molina
  • Elisa Cebral
Article
  • 57 Downloads

Abstract

The placenta plays a major role in embryo-fetal defects and intrauterine growth retardation after maternal alcohol consumption. Our aims were to determine the oxidative status and cellular and molecular oxidative stress effects on uterine myometrium and trophoblast-decidual tissue following perigestational alcohol intake at early organogenesis. CF-1 female mice were administered with 10% alcohol in drinking water for 17 days prior to and up to day 10 of gestation. Control females received ethanol-free water. Treated mice had smaller implantation sites compared to controls (p < 0.05), diminished maternal vascular lumen, and irregular/discontinuous endothelium of decidual vessels. The trophoblast giant cell layer was disorganized and presented increased abnormal nuclear frequency. The myometrium of treated females had reduced nitrite content, increased superoxide dismutase activity, and reduced glutathione (GSH) content (p < 0.05). However, the trophoblast-decidual tissue of treated females had increased nitrite content (p < 0.05), increased GSH level (p < 0.001), increased thiobarbituric acid-reactive substance concentration (p < 0.001), higher 3-nitrotyrosine immunoreaction, and increased apoptotic index (p < 0.05) compared to controls. In summary, perigestational alcohol ingestion at organogenesis induced oxidative stress in the myometrium and trophoblast-decidual tissue, mainly affecting cells and macromolecules of trophoblast and decidual tissues around early organogenesis, in CF-1 mouse, and suggests that oxidative-induced abnormal early placental formation probably leads to risk of prematurity and fetal growth impairment at term.

Keywords

Placenta Decidua Oxidative stress Cellular and tissue damage Mouse organogenesis Perigestational alcohol 

Notes

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP-CONICET, Grant Numbers: 114-200801-00014 and 11220090100492); the Agencia Nacional de Promoción Científica y Tecnológica (Grant Number BID-PICT-2008-2210); and the Universidad de Buenos Aires, Argentina (Grant Number UBACyT X187). The authors are very grateful to Dr. Cristian Sobarzo for his technical assistance in confecting the figures.

Compliance with ethical standards

Conflicts of interest

The author(s) declare that they have no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Jones KL, Smith DW, Ulleland CN et al (1973) Pattern of malformations in offspring of chronic alcoholic mothers. Lancet 1:267–271Google Scholar
  2. 2.
    Guerri C, Bazinet A, Riley EP (2009) Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 44(2):108–114CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    May PA, Gossage JP (2011) Maternal risk factors for fetal alcohol spectrum disorders: not as simple as it might seem. Alcohol Res Health 34(1):15–26PubMedPubMedCentralGoogle Scholar
  4. 4.
    Burd L, Roberts D, Olson M, Odendaal HJ (2007) Ethanol and the placenta: a review. Materrn Fetal Neonatal Med 20(5):361–375CrossRefGoogle Scholar
  5. 5.
    Roozen S, Peters GJ, Kok G, Townend D, Nijhuis J, Curfs L (2016) Worldwide prevalence of fetal alcohol spectrum disorders: a systematic literature review including meta-analysis. Alcohol Clin Exp Res 40(1):18–32CrossRefPubMedGoogle Scholar
  6. 6.
    Popova S, Lange S, Probst C, Gmel G, Rehm J (2017) Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: a systematic review and meta-analysis. Lancet Glob Health. doi: 10.1016/S2214-109X(17)30021-9 Google Scholar
  7. 7.
    Bosco C, Diaz E (2012) Pharmacology and cell metabolism. Placental hypoxia and foetal development versus alcohol exposure in pregnancy. Alcohol Alcoholism 47(2):109–117CrossRefPubMedGoogle Scholar
  8. 8.
    Burd L, Hofer R (2008) Biomarkers for detection of prenatal alcohol exposure: a critical review of fatty acid ethyl esters in meconium. Birth Defects Res A Clin Mol Teratol 82(7):487–493CrossRefPubMedGoogle Scholar
  9. 9.
    Gundogan F, Gilligan J, Qi W, Chen E, Naram R, de la Monte SM (2015) Dose effect of gestational ethanol exposure on placentation and fetal Growth. Placenta 36:523–530CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xu Y, Xiao R, Li Y (2005) Effect of ethanol on the development of visceral yolk sac. Hum Reprod 20(9):2509–2516CrossRefPubMedGoogle Scholar
  11. 11.
    Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, Cross J (2002) Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 250(2):358–373CrossRefPubMedGoogle Scholar
  12. 12.
    Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrin 10:49–79CrossRefGoogle Scholar
  13. 13.
    Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15(12):3061–3100CrossRefPubMedGoogle Scholar
  14. 14.
    Webster RP, Roberts VHJ, Myatt L (2008) Protein nitration in placenta—functional significance. Placenta 29:985–994CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Myatt L (2010) Review: reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta. doi:  10.1016/j.placenta.2009.12.021
  16. 16.
    Kay HH, Grindle KM, Magness RR (2000) Ethanol exposure induces oxidative stress and impairs nitric oxide availability in the human placental villi: a possible mechanism of toxicity. Am J Obstet Gynecol 182:682–688CrossRefPubMedGoogle Scholar
  17. 17.
    Gundogan F, Elwood G, Mark P et al (2010) Ethanol-induced oxidative stress and mitochondrial dysfunction in rat placenta: relevance to pregnancy loss. Alcohol Clin Exp Res 34:415–423CrossRefPubMedGoogle Scholar
  18. 18.
    Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. - 2014:761264CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Deng XS, Deitrich RA (2007) Ethanol metabolism and effects: nitric oxide and its interaction. Curr Clin Pharmacol 2:145–153CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kovacic P (2005) Unifying mechanism for addiction and toxicity of abused drugs with application to dopamine and glutamate mediators: electron transfer and reactive oxygen species. Med Hypotheses 65:90–96CrossRefPubMedGoogle Scholar
  21. 21.
    Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382CrossRefPubMedGoogle Scholar
  22. 22.
    Fujii J, Iuchi Y, Okada F (2005) Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3:43CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chandra A, Surti N, Kesavan S, Agarwal A (2009) Significance of oxidative stress in human reproduction. Arch Med 5:528–542Google Scholar
  24. 24.
    Rosselli M, Keller PJ, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4:3–24CrossRefPubMedGoogle Scholar
  25. 25.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. WAO J 5:9–19Google Scholar
  26. 26.
    Mate´s JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104Google Scholar
  27. 27.
    Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Devi BG, Schenker S, Mazloum B, Henderson GI (1996) Ethanol-induced oxidative stress and enzymatic defenses in cultured fetal rat hepatocytes. Alcohol 13:327–332CrossRefPubMedGoogle Scholar
  29. 29.
    Floyd RL, Decofle P, Hungerfond DW (1999) Alcohol use prior to pregnancy recognition. Am J Prev Med 12:101–107CrossRefGoogle Scholar
  30. 30.
    Cebral E, Faletti AB, Jawerbaum A, Paz DA (2007) Periconceptional alcohol consumption-induced changes in embryonic prostaglandin E levels in mouse organogenesis. Modulation by nitric oxide. Prost Leuk Ess Fatty Ac 76:141–151CrossRefGoogle Scholar
  31. 31.
    Coll TA, Perez-Tito L, Sobarzo CMA, Cebral E (2011) Embryo developmental disruption during organogenesis produced by CF-1 murine periconceptional alcohol consumption. Birth Defects Res B 92:560–574CrossRefGoogle Scholar
  32. 32.
    Coll TA, Chaufan G, Pérez-Tito L, Ventureira MR, Sobarzo CMA, de Molina Ríos, MdC Cebral E (2017) Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake. Mol Reprod Dev. doi: 10.1002/mrd.22865 PubMedGoogle Scholar
  33. 33.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  34. 34.
    Habig WH, Pabst MJ, Jakoby WB (1976) Glutathione S-transferase a from rat liver. Arch Biochem Biophys 75(2):710–716CrossRefGoogle Scholar
  35. 35.
    Beauchamp C, Fridovich IJ (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Anal Biochem 44(1):276–286CrossRefPubMedGoogle Scholar
  36. 36.
    Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–553CrossRefPubMedGoogle Scholar
  37. 37.
    Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  38. 38.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  39. 39.
    McDonough KH (2003) Antioxidant nutrients and alcohol. Toxicology 189:89–97CrossRefPubMedGoogle Scholar
  40. 40.
    Gonzalez Martín C, Vega Agapito V, Obeso A, Prieto-Lloret J, Bustamante R, Castañeda J, Agapito T, Gonzalez C (2011) Moderate ethanol ingestion, redox status, and cardiovascular system in the rat. Alcohol 45:381–391CrossRefGoogle Scholar
  41. 41.
    Gauthier TW, Kable JA, Burwell L, Coles CD, Brown LA (2010) Maternal alcohol use during pregnancy causes systemic oxidation of the glutathione redox system. Alcohol Clin Exp Res 34:123–130CrossRefPubMedGoogle Scholar
  42. 42.
    Acevedo CG, Carrasco G, Burotto M, Rojas S, Bravo I (2001) Ethanol inhibits l-arginine uptake and enhances NO formation in human placenta. Life Sci 68:2893–2903CrossRefPubMedGoogle Scholar
  43. 43.
    Wareing M, Greenwood SL, Baker PN (2006) Reactivity of human placental chorionic plate vessels is modified by level of oxygenation: differences between arteries and veins. Placenta 27:42–48CrossRefPubMedGoogle Scholar
  44. 44.
    Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia inducible factor-1 activity by nitric oxide. Blood 95:189–197PubMedGoogle Scholar
  45. 45.
    Baraona E, Shoichet L, Navder K, y Lieber CS (2002) Mediation by nitric oxide of the stimulatory effects of ethanol on blood flow. Life Sci 70:2987–2995Google Scholar
  46. 46.
    Oekonomaki E, Notas G, Mouzas I, Valatas V, Skordilis P, Xidakis C, Kouroumalis E (2004) Binge drinking and nitric oxide metabolites in chronic liver disease. Alcohol Alcohol 39:106–9Google Scholar
  47. 47.
    Cooper RG, Magwere T (2008) Nitric oxide-mediated pathogenesis during nicotine and alcohol consumption. Indian J Physiol Pharmacol 52:11–18PubMedGoogle Scholar
  48. 48.
    Spiteller G (2006) Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Rad Biol Med 41:362–387CrossRefPubMedGoogle Scholar
  49. 49.
    Plachta N, Traister A, Weil M (2003) Nitric oxide is involved in establishing the balance between cell cycle progression and cell death in the developing neural tube. Exp Cell Res 288:354–362CrossRefPubMedGoogle Scholar
  50. 50.
    Kasina S, Rizwani W, Radhika KV et al (2005) Nitration of profilin effects its interaction with poly (l-proline) and actin. J Biochem 138:687–695CrossRefPubMedGoogle Scholar
  51. 51.
    Banan A, Fields JZ, Decker H, Zhang Y, Keshavarzian A (2000) Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther 294:997–1008PubMedGoogle Scholar
  52. 52.
    Jawerbaum A (2016) Placental endoplasmic reticulum stress and acidosis: relevant aspects in gestational diabetes. Diabetologia 59(10):2080–2081CrossRefPubMedGoogle Scholar
  53. 53.
    Smith SC, Baker PN, Symonds EM (1997) Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol 177:57–65CrossRefPubMedGoogle Scholar
  54. 54.
    Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabo C (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156:350–358PubMedGoogle Scholar
  55. 55.
    Crocker IP, Cooper S, Ong SC, Baker PN (2003) Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol 162:637–643CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Tamara Anahí Coll
    • 1
    • 2
  • Gabriela Chaufan
    • 1
    • 3
  • Leticia Gabriela Pérez-Tito
    • 1
    • 2
  • Martín Ricardo Ventureira
    • 1
    • 4
  • María del Carmen Ríos de Molina
    • 1
    • 3
  • Elisa Cebral
    • 1
    • 4
    • 5
  1. 1.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  5. 5.IBBEA-UBA/CONICET, Intendente GüiraldesBuenos AiresArgentina

Personalised recommendations