Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 65–75 | Cite as

Functional validation of ATF4 and GADD34 in Neuro2a cells by CRISPR/Cas9-mediated genome editing

  • Kentaro Oh-hashi
  • Naoki Sugiura
  • Fumimasa Amaya
  • Ken-ichi Isobe
  • Yoko Hirata


Activating transcription factor 4 (ATF4), which is ubiquitously expressed, plays a crucial role in regulating various stress-responsive genes under pathophysiological conditions. Further, growth arrest and DNA damage-inducible gene 34 (GADD34), a downstream target of ATF4, has been reported to negatively regulate ATF4 expression. To understand the relationship between intrinsic ATF4 and GADD34 under resting and ER stress conditions, we used a novel gene editing approach, CRISPR/Cas9, to integrate antibiotic-resistant genes into the target genes, ATF4 and GADD34. First, we manipulated the ATF4 gene in the mouse neuroblastoma cell line, Neuro2a, and compared the ER stress responses between parental and ATF4-edited Neuro2a cells. Next, we established Neuro2a cells with edited GADD34 and ATF4/GADD34 genes and found that ATF4 acts as a proapoptotic factor, but GADD34 depletion did not attenuate the expression of cleaved caspase-3 induced by tunicamycin treatment. These findings provide new insights into the ATF4 signaling cascades. Additionally, the rapid establishment of cells lacking multiple genes using this CRISPR/Cas9 system will be a powerful tool for exploring various cellular issues under pathophysiological conditions.


ATF4 CRIPSR/Cas9 ER stress GADD34 



Activating transcription factor 4


Activating transcription factor 6


Eukaryotic translation initiation factor 2α


Endoplasmic reticulum


Growth arrest and DNA damage-inducible gene 34


Growth arrest and DNA damage-inducible gene 153


Glyceraldehyde 3-phosphate dehydrogenase


78-kDa glucose-regulated protein


Homocysteine-induced endoplasmic reticulum protein


Inositol-requiring enzyme-1


PKR-like endoplasmic reticulum kinase


Reverse transcription polymerase chain reaction



We thank Dr. George Church for providing the hCas9. This work is, in part, supported by Grant-in-Aid for Challenging Exploratory Research (No. 17K19901 to K.O.), Grant-in-Aid for Scientific Research (B) (No. 26670692, to F.A., and No. 16H05280, to K.I.), and the OGAWA Science and Technology Foundation (to K.O.).


  1. 1.
    Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269–11274CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274CrossRefPubMedGoogle Scholar
  3. 3.
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108CrossRefPubMedGoogle Scholar
  4. 4.
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu C, Johansen FE, Prywes R (1997) Interaction of ATF6 and serum response factor. Mol Cell Biol 17:4957–4966CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berlanga JJ, Santoyo J, De Haro C (1999) Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur J Biochem 265:754–762CrossRefPubMedGoogle Scholar
  7. 7.
    Chen JJ, London IM (1995) Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends Biochem Sci 20:105–108CrossRefPubMedGoogle Scholar
  8. 8.
    Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17:503–524CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang HY, Wek RC (2005) Phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280:14189–14202CrossRefPubMedGoogle Scholar
  10. 10.
    Lange PS, Chavez JC, Pinto JT, Coppola G, Sun CW, Townes TM, Geschwind DH, Ratan RR (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205:1227–1242CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, Ron D, Taba I (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11:1473–1480CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Luethy JD, Fargnoli J, Park JS, Fornace AJ Jr, Holbrook NJ (1990) Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J Biol Chem 265(27):16521–16526PubMedGoogle Scholar
  13. 13.
    Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389CrossRefPubMedGoogle Scholar
  14. 14.
    Tanaka T, Tsujimura T, Takeda K, Sugihara A, Maekawa A, Terada N, Yoshida N, Akira S (1998) Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 3:801–810CrossRefPubMedGoogle Scholar
  15. 15.
    Masuoka HC, Townes TM (2002) Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99:736–745CrossRefPubMedGoogle Scholar
  16. 16.
    Pasini S, Corona C, Liu J, Greene LA, Shelanski ML (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11:183–191CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rajesh K, Krishnamoorthy J, Gupta J, Kazimierczak U, Papadakis AI, Deng Z, Wang S, Kuninaka S, Koromilas AE (2016) The eIF2α serine 51 phosphorylation-ATF4 arm promotes HIPPO signaling and cell death under oxidative stress. Oncotarget 7:51044–51058CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl AE, Koong A, Fuchs SY, Diehl JA, Mills IG, Ruggero D, Koumenis C (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Investig 122:4621–4634CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477CrossRefPubMedGoogle Scholar
  20. 20.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradic TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oh-hashi K, Furuta E, Norisada J, Amaya F, Hirata Y, Kiuchi K (2016) Application of NanoLuc to monitor the intrinsic promoter activity of GRP78 using the CRISPR/Cas9 system. Genes Cells 21:1137–1143CrossRefPubMedGoogle Scholar
  23. 23.
    Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153:1011–1022CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma Y, Hendershot LM (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278:34864–34873CrossRefPubMedGoogle Scholar
  25. 25.
    Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17:1573–1575CrossRefPubMedGoogle Scholar
  26. 26.
    Esvelt KM, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K, Watanabe M (1995) Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a water-soluble formazan dye. Vitro Toxicol 1995(8):187–189Google Scholar
  28. 28.
    Ma Y, Hendershot LM (2004) Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J Biol Chem 279:13792–13799CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24:1365–1377CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem 278:37375–37385CrossRefPubMedGoogle Scholar
  32. 32.
    Srivastava RK, Li C, Ahmad A, Abrams O, Gorbatyuk MS, Harrod KS, Wek RC, Afaq F, Athar M (2016) ATF4 regulates arsenic trioxide-mediated NADPH oxidase, ER-mitochondrial crosstalk and apoptosis. Arch Biochem Biophys 609:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365CrossRefPubMedGoogle Scholar
  34. 34.
    Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D (2003) Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163:767–775CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Coutts M, Cui K, Davis KL, Keutzer JC, Sytkowski AJ (1999) Regulated expression and functional role of the transcription factor CHOP (GADD153) in erythroid growth and differentiation. Blood 93:3369–3378PubMedGoogle Scholar
  36. 36.
    Huang CH, Chu YR, Ye Y, Chen X (2014) Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J Biol Chem 289:4444–4454CrossRefPubMedGoogle Scholar
  37. 37.
    Chan SL, Fu W, Zhang P, Cheng A, Lee J, Kokame K, Mattson MP (2004) Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J Biol Chem 279:28733–28743CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kentaro Oh-hashi
    • 1
    • 2
  • Naoki Sugiura
    • 2
  • Fumimasa Amaya
    • 3
  • Ken-ichi Isobe
    • 4
  • Yoko Hirata
    • 1
    • 2
  1. 1.United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
  2. 2.Department of Chemistry and Biomolecular Science, Faculty of EngineeringGifu UniversityGifuJapan
  3. 3.Department of AnesthesiologyKyoto Prefectural University of MedicineKyotoJapan
  4. 4.Nagoya Wemen UniversityNagoyaJapan

Personalised recommendations