Skip to main content

Advertisement

Log in

Suppression of methionine-induced colon injury of young rats by cysteine and N-acetyl-l-cysteine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Changes in the methionine metabolism can cause a state called hyperhomocysteinemia, inducing oxidative stress in the gut. The production of free radicals is important in the colon damage caused by methionine. This study aimed at evaluating the effect of the use of l-cysteine and N-acetyl-l-cysteine on the colon morphometry of young rats treated with methionine. A total number of 32 male rats were distributed in a randomized experimental design in 4 groups: control group treated with saline; methionine group; cysteine + methionine group, and N-acetyl-l-cysteine + methionine group. After 21 days of treatment, rats were sacrificed and the colon samples were taken for histological and biochemical analysis. Methionine load increased depth of crypts, the lamina muscularis mucosae thickness, the mucosal height, and the number of cells in lamina propria (p < 0.01). Combination of methionine with l-cysteine (C group) and with N-acetyl-l-cysteine (N group) reversed methionine effects. Methionine treatment increased the GPx activity and MDA concentration, while l-cysteine and N-acetyl-l-cysteine increased the catalase activity compared to methionine group. It was concluded that the use of l-cysteine and N-acetyl-l-cysteine was beneficial to decrease intestinal mucosal height and oxidative damage when methionine was used in combination with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fang Z, Yao K, Zhang X, Zhao S, Sun Z, Tian G, Yu B, Lin Y, Zhu B, Jia G, Zhang K, Chen D, Wu D (2010) Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids 39(3):633–640

    Article  CAS  PubMed  Google Scholar 

  2. Brosnan JT, da Silva R, Brosnan ME (2007) Amino acids and the regulation of methyl balance in humans. Curr Opin Clin Nutr Metab Care 10(1):52–57

    Article  CAS  PubMed  Google Scholar 

  3. Bauchart-Thevret C, Stoll B, Burrin DG (2009) Intestinal metabolism of sulfur amino acids. Nutr Res Rev 22(2):175–187

    Article  CAS  PubMed  Google Scholar 

  4. Duranton B, Freund JN, Galluser M, Schleiffer R, Gossé F, Bergmann C, Hasselmann M, Raul F (1999) Promotion of intestinal carcinogenesis by dietary methionine. Carcinogenesis 20(3):493–497

    Article  CAS  PubMed  Google Scholar 

  5. Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48(4):759–774

    CAS  PubMed  Google Scholar 

  6. Duranton B, Nsi-Emvo E, Schleiffer R, Gossé F, Galluser M, Raul F (1997) Suppression of preneoplastic changes in the intestine of rats fed low levels of polyamines. Cancer Res 57(4):573–575

    CAS  PubMed  Google Scholar 

  7. Paulsen JE, Reistad R, Eliassen KA, Sjaastad OV, Alexander J (1997) Dietary polyamines promote the growth of azoxymethane-induced aberrant crypt foci in rat colon. Carcinogenesis 18(10):1871–1875

    Article  CAS  PubMed  Google Scholar 

  8. Robin S, Courderot-Masuyer C, Nicod L, Jacqueson A, Richert L, Berthelot A (2004) Opposite effect of methionine-supplemented diet, a model of hyperhomocysteinemia, on plasma and liver antioxidant status in normotensive and spontaneously hypertensive rats. J Nutr Biochem 15(2):80–89

    Article  CAS  PubMed  Google Scholar 

  9. Schalinske KL, Smazal AL (2012) Homocysteine imbalance: a pathological metabolic marker. Adv Nutr 3:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carmel R, Jacobsen DW (2001) Homocysteine in health and disease. Cambridge University Press, United Kingdom, 435–436

  11. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136(6 Suppl):1636–1640

    Article  Google Scholar 

  12. Kurpad AV, Anand P, Dwarkanath P, Hsu JW, Thomas T, Devi S, Thomas A, Mhaskar R, Jahoor F (2014) Whole body methionine kinetics, transmethylation, transulfuration and remethylation during pregnancy. Clin Nutr 33(1):122–129

    Article  CAS  PubMed  Google Scholar 

  13. Jordao AA, Zanutto ME, Domenici FA, Portari GV, Cecchi AO, Zucoloto S, Vannucchi H (2009) Progression of lipid peroxidation measured as thiobarbituric acid reactive substances, damage to DNA and histopathological changes in the liver of rats subjected to a methionine–choline-deficient diet. Basic Clin Pharmacol Toxicol 105(3):150–155

    Article  CAS  PubMed  Google Scholar 

  14. Battistelli S, Vittoria A, Stefanoni M, Bing C, Roviello F (2006) Total plasma homocysteine and methylenetetrahydrofolate reductase C677T polymorphism in patients with colorectal carcinoma. World J Gastroenterol 12:6128–6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiang FF, Wang HM, Lan YC, Yang MH, Huang SC, Huang YC (2014) High homocysteine is associated with increased risk of colorectal cancer independently of oxidative stress and antioxidant capacities. Clin Nutr 33:1054–1060

    Article  CAS  PubMed  Google Scholar 

  16. Oussalah A, Guéant JL, Peyrin-Biroulet L (2011) Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment Pharmacol Ther 34:1173–1184

    Article  CAS  PubMed  Google Scholar 

  17. Lim YJ, Kim JH, Park SK, Son HJ, Kim JJ, Kim YH (2012) Hyperhomocysteinemia is a risk factor for colorectal adenoma in women. J Clin Biochem Nutr 51:132–135

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qin X (2012) Etiology of inflammatory bowel disease: a unified hypothesis. World J Gastroenterol 18:1708–1722

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubin DC, Shaker A, Levin MS (2012) Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 3:107

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fedorak RN, Wong K, Bridges R (2010) Canadian digestive health foundation public impact series. Inflammatory bowel disease in Canada: incidence, prevalence, and direct and indirect economic impact. Can J Gastroenterol 24:651–655

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mato JM, Lu SC (2007) Role of S-adenosyl-l-methionine in liver health and injury. Hepatology 45:1306–1312

    Article  CAS  PubMed  Google Scholar 

  22. Burrin DG, Stoll B (2007) Emerging aspects of gut sulfur amino acid metabolism. Curr Opin Clin Nutr Metab Care 10:63–68

    Article  CAS  PubMed  Google Scholar 

  23. Deplancke B, Gaskins HR (2002) Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care 5:85–92

    Article  CAS  PubMed  Google Scholar 

  24. Seril DN, Liao J, Ho KL, Yang CS, Yang GY (2002) Inhibition of chronic ulcerative colitis-associated colorectal adenocarcinoma development in a murine model by N-acetylcysteine. Carcinogenesis 23(6):993–1001

    Article  CAS  PubMed  Google Scholar 

  25. Csontos C, Rezman B, Foldi V, Bogar L, Bognar Z, Drenkovics L, Roth E, Weber G, Lantos J (2011) Effect of N-acetylcysteine treatment on the expression of leukocyte surface markers after burn injury. Burns 37:453–464

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi N, Ishii Y, Morishima Y, Yageta Y, Haraguchi N, Yamadori T, Masuko H, Sakamoto T, Yanagawa T, Warabi E, Ishii T, Hizawa N (2011) Aggravation of bleomycin-induced pulmonary inflammation and fibrosis in mice lacking peroxiredoxin I. Am J Respir Cell Mol Biol 45:600–609

    Article  CAS  PubMed  Google Scholar 

  27. Palacio JR, Markert UR, Martinez P (2011) Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 60:695–704

    Article  CAS  PubMed  Google Scholar 

  28. Ovrebo KK, Svardal A (2000) The effect of glutathione modulation on the concentration of homocysteine in plasma of rats. Pharmacol Toxicol 87:103–107

    Article  CAS  PubMed  Google Scholar 

  29. Hultberg B, Andersson A, Masson P, Larson M, Tunek A (1994) Plasma homocysteine and thiol compound fractions after oral administration of N-acetylcysteine. Scand J Clin Lab Investig 54:417–422

    Article  CAS  Google Scholar 

  30. Roes EM, Raijmarkers MTM, Peters WHM, Steegers EAP (2002) Effects of oral N-acetylcysteine on plasma homocysteine and whole blood glutathione levels in healthy, non-pregnant women. Clin Chem Lab Med 40:496–498

    Article  CAS  PubMed  Google Scholar 

  31. Liapi C, Zarros A, Theocharis S, Al-Humadi H, Anifantaki F, Gkrouzman E, Mellios Z, Skandali N, Tsakiris S (2009) The neuroprotective role of l-cysteine towards the effects of short-term exposure to lanthanum on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+, K+)- and Mg2+-ATPase. Biometals 22(2):329–335

    Article  CAS  PubMed  Google Scholar 

  32. Akbulut S, Elbe H, Eris C, Dogan Z, Toprak G, Otan E, Erdemli E, Turkoz Y (2014) Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J Gastroenterol 20(29):10158–10165

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  34. Bradbury P, Gordon KC (1982) Connective tissues and stains. In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques, 2nd edn. Churchill Livingstone, Edinburgh, pp 122–144

    Google Scholar 

  35. Gömöri G (1937) Silver impregnation for reticulin in paraffin sections. Am J Pathol 13:993–1002

    PubMed  PubMed Central  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  37. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  38. Draper H, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  39. Günzler WA, Kremers H, Flohé L (1974) An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood. Z Klin Chem Klin Biochem 12(10):444–448

    PubMed  Google Scholar 

  40. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  41. Sun M, Zigman S (1987) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autooxidation. Anal Biochem 90:81–89

    Article  Google Scholar 

  42. Aw TY (2003) Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol Sci 18:201–204

    CAS  PubMed  Google Scholar 

  43. Jonas CR, Ziegler TR, Gu LH, Jones DP (2002) Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radic Biol Med 33:1499–1506

    Article  CAS  PubMed  Google Scholar 

  44. Zhu S, Li J, Bing Y, Yan W, Zhu Y, Xia B, Chen M (2015) Diet-induced hyperhomocysteinaemia increases intestinal inflammation in an animal model of colitis. J Crohns Colitis 9(9):708–719

    Article  PubMed  Google Scholar 

  45. Gregus Z, Klaasen CD (2001) Mechanisms of toxicity. In: Klaassen CD (ed) Casarett and Doull’s toxicology. McGraw-Hill, New York, pp 35–81

    Google Scholar 

  46. Cheng J, Kaplowitz N (2004) Hyperhomocysteinemia, endoplasmic reticulum stress and alcoholic liver injury. World J Gastroenterol 10:1699–1708

    Article  Google Scholar 

  47. Toborek M, Kopieczna-Grzebieniak E, Drozdz M, Wieczorek M (1996) Increased lipid peroxidation and antioxidant activity in methionine-induced hepatitis in rabbits. Nutrition 12:534–537

    Article  CAS  PubMed  Google Scholar 

  48. Woo CW, Prathapasinghe GA, Siow YL (2006) Hyperhomocysteinemia induces liver injury in rat: protective effect of folic acid supplementation. Biochim Biophys Acta 1762(7):656–665

    Article  CAS  PubMed  Google Scholar 

  49. Balkan J, Doğru-Abbasoğlu S, Çevikbaş U, Aykaç-Toker G, Uysal M (2004) Methionine supplementation did not augment oxidative stress, atherosclerotic changes and hepatotoxicity induced by high cholesterol diet in C57BL/6J mice. J Nutr Sci Vitaminol 50:258–264

    Article  CAS  PubMed  Google Scholar 

  50. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  CAS  PubMed  Google Scholar 

  51. Xu CC, Yang SF, Zhu LH, Cai X, Sheng YS, Zhu SW, Xu JX (2014) Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. J Anim Sci 92(4):1504–1511

    Article  CAS  PubMed  Google Scholar 

  52. Atalay F, Odabasoglu F, Halici M, Cadirci E, Aydin O, Halici Z, Cakir A (2016) N-Acetyl cysteine has both gastro-protective and anti-inflammatory effects in experimental rat models: its gastro-protective effect is related to its in vivo and in vitro antioxidant properties. J Cell Biochem 117(2):308–319

    Article  CAS  PubMed  Google Scholar 

  53. Hultberg B, Andersson A, Masson P, Larson M, Tunek A (1994) Plasma homocysteine and thiol compound fractions after oral administration of N-acetylcysteine. Scand J Clin Lab Investig 54(6):417–422

    Article  CAS  Google Scholar 

  54. Verhoef P, Steenge GR, Boelsma E, van Vliet T, Olthof MR, Katan MB (2004) Dietary serine and cystine attenuate the homocysteine-raising effect of dietary methionine: a randomized crossover trial in humans. Am J Clin Nutr 80(3):674–679

    Article  CAS  PubMed  Google Scholar 

  55. Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114

    Article  PubMed  Google Scholar 

  56. Li TW, Yang H, Peng H, Xia M, Mato JM, Lu SC (2012) Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis 33(2):427–435

    Article  PubMed  Google Scholar 

  57. Kluge H, Gessner DK, Herzog E, Eder K (2016) Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks. Poult Sci 95(3):590–594

    Article  CAS  PubMed  Google Scholar 

  58. Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Orentreich DS, Orentreich N, Refsum H, Perrone CE (2013) Effect of taurine and N-acetylcysteine on methionine restriction-mediated adiposity resistance. Metabolism 62(4):509–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant 175043 from Ministry of Education, Science and Technological Development of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Stojanović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Medical Faculty University of Belgrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, M., Šćepanović, L., Todorović, D. et al. Suppression of methionine-induced colon injury of young rats by cysteine and N-acetyl-l-cysteine. Mol Cell Biochem 440, 53–64 (2018). https://doi.org/10.1007/s11010-017-3155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3155-1

Keywords

Navigation