Advertisement

Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 43–51 | Cite as

Melatonin increases the effect of 5-fluorouracil-based chemotherapy in human colorectal adenocarcinoma cells in vitro

  • Roberto Pariente
  • Ignacio Bejarano
  • Ana Beatriz Rodríguez
  • José Antonio Pariente
  • Javier Espino
Article

Abstract

Melatonin has antitumor activity via several mechanisms including its anti-proliferative and pro-apoptotic effects. Moreover, it has been proven that melatonin in combination with chemotherapeutic agents enhances chemotherapy-triggered apoptosis in several types of cancer. Therefore, this study was intended to evaluate whether melatonin is able to strengthen the anti-cancer potential of different chemotherapeutic drugs in human colorectal adenocarcinoma HT–29 cells. We found that treatment with 20 µM cisplatin (CIS) or 1 mM 5-fluorouracil (5-FU) for 72 h induced a decrease in HT-29 cell viability. Furthermore, 1 mM melatonin significantly (P < 0.05) increased the cytotoxic effects of 5-FU. Likewise, simultaneous stimulation with 1 mM melatonin and 1 mM 5-FU significantly (P < 0.05) enhanced the ratio of cells with an overproduction of intracellular reactive oxygen species and substantially augmented the population of apoptotic cells compared to the treatment with 5-FU alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in CIS-treated HT-29 cells, as suggested by a slight increment in the fraction of early apoptotic cells that was observed only after 48 h. Consistently, co-stimulation of HT-29 cells with 20 µM CIS or 1 mM 5-FU in the presence of 1 mM melatonin further increased caspase-3 activation. Apart from this, the cytostatic activity displayed by CIS due to S phase arrest was not affected by concomitant stimulation with melatonin. Overall, our results indicate that melatonin increases the sensitivity of HT-29 cells to 5-FU treatment and, consequently, the indolamine could be potentially applied to colorectal adenocarcinoma treatment as a potent chemosensitizing agent.

Keywords

Melatonin 5-fluorouracil Apoptosis Reactive oxygen species Colon cancer 

Notes

Acknowledgements

This work was supported by Junta de Extremadura (GR15051). J. Espino holds a research post-doctoral fellowship from Junta de Extremadura (jointly financed by the European Regional Development Fund (ERDF); ref. PO14011). The authors appreciate the technical and human support provided by Facility of Bioscience Applied Techniques of SAIUEx (financed by UEx, Junta de Extremadura, MICINN, FEDER, and FSE).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. doi: 10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Scholefield JH, Steele RJ, British Society For Gastroenterology, Association of Coloproctology for Great Britain and Ireland (2002) Guidelines for follow up after resection of colorectal cancer. Gut 51:V3–V5CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hardeland R, Cardinali DP, Srinivasan V et al (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384. doi: 10.1016/j.pneurobio.2010.12.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Trivedi PP, Jena GB, Tikoo KB, Kumar V (2016) Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog 55:255–267. doi: 10.1002/mc.22274 CrossRefPubMedGoogle Scholar
  5. 5.
    García-Navarro A, González-Puga C, Escames G et al (2007) Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J Pineal Res 43:195–205CrossRefPubMedGoogle Scholar
  6. 6.
    Motilva V, García-Mauriño S, Talero E, Illanes M (2011) New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. J Pineal Res 51:44–60. doi: 10.1111/j.1600-079X.2011.00915.x CrossRefPubMedGoogle Scholar
  7. 7.
    Kos-Kudla B, Ostrowska Z, Kozlowski A et al (2002) Circadian rhythm of melatonin in patients with colorectal carcinoma. Neuro Endocrinol Lett 23:239–242PubMedGoogle Scholar
  8. 8.
    Schernhammer ES, Laden F, Speizer FE et al (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828CrossRefPubMedGoogle Scholar
  9. 9.
    Naziroglu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230CrossRefPubMedGoogle Scholar
  10. 10.
    Sakallı Çetin E, Nazıroğlu M, Çiğ B et al (2017) Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel. J Recept Signal Transduct Res 37:84–93. doi: 10.3109/10799893.2016.1160931 CrossRefPubMedGoogle Scholar
  11. 11.
    Koşar PA, Nazıroğlu M, Övey İS, Çiğ B (2016) Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: involvement of TRPV1 channels. J Membr Biol 249:129–140. doi: 10.1007/s00232-015-9855-0 CrossRefPubMedGoogle Scholar
  12. 12.
    Kim J-H, Jeong S-J, Kim B et al (2012) Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res 52:244–252. doi: 10.1111/j.1600-079X.2011.00935.x CrossRefPubMedGoogle Scholar
  13. 13.
    Pariente R, Pariente JA, Rodríguez AB, Espino J (2016) Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60:55–64. doi: 10.1111/jpi.12288 CrossRefPubMedGoogle Scholar
  14. 14.
    Fan L-L, Sun G-P, Wei W et al (2010) Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol 16:1473–1481CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Plaimee P, Weerapreeyakul N, Barusrux S, Johns NP (2015) Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif 48:67–77. doi: 10.1111/cpr.12158 CrossRefPubMedGoogle Scholar
  16. 16.
    Casado-Zapico S, Rodriguez-Blanco J, García-Santos G et al (2010) Synergistic antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: potentiation of the extrinsic apoptotic pathway. J Pineal Res 48:72–80. doi: 10.1111/j.1600-079X.2009.00727.x CrossRefPubMedGoogle Scholar
  17. 17.
    Uguz AC, Cig B, Espino J et al (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53:91–98. doi: 10.1111/j.1600-079X.2012.00974.x CrossRefPubMedGoogle Scholar
  18. 18.
    Bejarano I, Espino J, Barriga C et al (2011) Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108:14–20. doi: 10.1111/j.1742-7843.2010.00619.x CrossRefPubMedGoogle Scholar
  19. 19.
    Espino J, Bejarano I, Paredes SD et al (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206. doi: 10.1111/j.1600-079X.2011.00876.x CrossRefPubMedGoogle Scholar
  20. 20.
    Espino J, Rodríguez AB, Pariente JA (2013) The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J Pineal Res 54:442–452. doi: 10.1111/jpi.12042 CrossRefPubMedGoogle Scholar
  21. 21.
    Espino J, González-Gómez D, Moreno D et al (2013) Tempranillo-derived grape seed extract induces apoptotic cell death and cell growth arrest in human promyelocytic leukemia HL-60 cells. Food Funct 4:1759–1766. doi: 10.1039/c3fo60267b CrossRefPubMedGoogle Scholar
  22. 22.
    Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338. doi: 10.1038/nrc1074 CrossRefPubMedGoogle Scholar
  23. 23.
    Cassidy J, Saltz L, Twelves C et al (2011) Efficacy of capecitabine versus 5-fluorouracil in colorectal and gastric cancers: a meta-analysis of individual data from 6171 patients. Ann Oncol 22:2604–2609. doi: 10.1093/annonc/mdr031 CrossRefPubMedGoogle Scholar
  24. 24.
    Wang L-H, Li Y, Yang S-N et al (2014) Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer 110:341–352. doi: 10.1038/bjc.2013.752 CrossRefPubMedGoogle Scholar
  25. 25.
    Rodriguez-Garcia A, Mayo JC, Hevia D et al (2013) Phenotypic changes caused by melatonin increased sensitivity of prostate cancer cells to cytokine-induced apoptosis. J Pineal Res 54:33–45. doi: 10.1111/j.1600-079X.2012.01017.x CrossRefPubMedGoogle Scholar
  26. 26.
    Bejarano I, Redondo PC, Espino J et al (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400. doi: 10.1111/j.1600-079X.2009.00675.x CrossRefPubMedGoogle Scholar
  27. 27.
    Rubio S, Estévez F, Cabrera J et al (2007) Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res 42:131–138. doi: 10.1111/j.1600-079X.2006.00392.x CrossRefPubMedGoogle Scholar
  28. 28.
    Cos S, Garcia-Bolado A, Sánchez-Barceló EJ (2001) Direct antiproliferative effects of melatonin on two metastatic cell sublines of mouse melanoma (B16BL6 and PG19). Melanoma Res 11:197–201CrossRefPubMedGoogle Scholar
  29. 29.
    Majsterek I, Gloc E, Blasiak J, Reiter RJ (2005) A comparison of the action of amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 38:254–263. doi: 10.1111/j.1600-079X.2005.00197.x CrossRefPubMedGoogle Scholar
  30. 30.
    Bennukul K, Numkliang S, Leardkamolkarn V (2014) Melatonin attenuates cisplatin-induced HepG2 cell death via the regulation of mTOR and ERCC1 expressions. World J Hepatol 6:230–242. doi: 10.4254/wjh.v6.i4.230 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Büyükavci M, Ozdemir O, Buck S et al (2011) Effect of melatonin on the cytotoxicity of chemotherapeutic drugs in human leukemia cells. In vivo (brooklyn) 25:405–409Google Scholar
  32. 32.
    Kilic U, Kilic E, Tuzcu Z et al (2013) Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab (Lond) 10:7. doi: 10.1186/1743-7075-10-7 CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Madhu P, Reddy KP, Reddy PS (2015) Melatonin reduces oxidative stress and restores mitochondrial function in the liver of rats exposed to chemotherapeutics. J Exp Zool A Ecol Genet Physiol 323:301–308. doi: 10.1002/jez.1917 CrossRefPubMedGoogle Scholar
  34. 34.
    Demir MG, Altıntoprak N, Aydın S et al (2015) Effect of transtympanic injection of melatonin on cisplatin-induced ototoxicity. J Int Adv Otol 11:202–206. doi: 10.5152/iao.2015.1094 CrossRefPubMedGoogle Scholar
  35. 35.
    Tan D-X, Manchester LC, Terron MP et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42. doi: 10.1111/j.1600-079X.2006.00407.x CrossRefPubMedGoogle Scholar
  36. 36.
    Xin Z, Jiang S, Jiang P et al (2015) Melatonin as a treatment for gastrointestinal cancer: a review. J Pineal Res 58:375–387. doi: 10.1111/jpi.12227 CrossRefPubMedGoogle Scholar
  37. 37.
    Wei J-Y, Li W-M, Zhou L-L et al (2015) Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res 58:429–438. doi: 10.1111/jpi.12226 CrossRefPubMedGoogle Scholar
  38. 38.
    Wang J, Guo W, Chen W et al (2013) Melatonin potentiates the antiproliferative and pro-apoptotic effects of ursolic acid in colon cancer cells by modulating multiple signaling pathways. J Pineal Res 54:406–416. doi: 10.1111/jpi.12035 CrossRefPubMedGoogle Scholar
  39. 39.
    Ju H-Q, Li H, Tian T et al (2016) Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation. J Pineal Res 60:27–38. doi: 10.1111/jpi.12285 CrossRefPubMedGoogle Scholar
  40. 40.
    Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. doi: 10.1146/annurev.biochem.69.1.217 CrossRefPubMedGoogle Scholar
  41. 41.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312CrossRefPubMedGoogle Scholar
  42. 42.
    Gao Y, Xiao X, Zhang C et al (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res 62:e12380. doi: 10.1111/jpi.12380 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations