Skip to main content
Log in

ARHGEF39 promotes gastric cancer cell proliferation and migration via Akt signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dbl-family guanine nucleotide exchange factors (GEFs) can activate RhoGTPases by facilitating the exchange of GDP for GTP, the aberrant expression of which has been implicated in tumorigenicity and metastasis of human cancers. ARHGEF39, as a member of Dbl-family GEFs, was reported to be a potential oncogene in human hepatocellular carcinoma previously. However, the role of ARHGEF39 in gastric cancer (GC) remains unclear so far. In the current study, we demonstrated that ARHGEF39 expression was significantly upregulated in GC tissues compared with paired adjacent normal tissues by quantitative real-time PCR analysis. Functional analyses revealed that ARHGEF39 overexpression could promote proliferation, colony formation, and migration of GC cells in vitro, whereas ARHGEF39 knockdown markedly suppressed these phenotypes. Moreover, ARHGEF39 enhanced tumorigenicity and lung metastasis potential of GC cells in nude mice model. Mechanistically, we found that overexpressed ARHGEF39 significantly increased the phosphorylation level of Akt (p-Akt), and its effect on cell proliferation was attenuated by PI3K inhibitor LY294002. Thus, our findings suggest that ARHGEF39 may contribute to cell proliferation and migration in GC via a possible mechanism involving Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N (2014) Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 50:1330–1344. doi:10.1016/j.ejca.2014.01.029

    Article  PubMed  Google Scholar 

  3. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D, Trama A, Visser O, Brenner H, Ardanaz E, Bielska-Lasota M, Engholm G, Nennecke A, Siesling S, Berrino F, Capocaccia R, Group E-W (2014) Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5-a population-based study. Lancet Oncol 15:23–34. doi:10.1016/S1470-2045(13)70546-1

    Article  PubMed  Google Scholar 

  4. Zhao J, Liu Y, Huang G, Cui P, Zhang W, Zhang Y (2015) Long non-coding RNAs in gastric cancer: versatile mechanisms and potential for clinical translation. Am J Cancer Res 5:907–927

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karlsson R, Pedersen ED, Wang Z, Brakebusch C (2009) Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796:91–98. doi:10.1016/j.bbcan.2009.03.003

    CAS  PubMed  Google Scholar 

  6. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  7. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. doi:10.1146/annurev.cellbio.21.020604.150721

    Article  CAS  PubMed  Google Scholar 

  9. Whitehead IP, Campbell S, Rossman KL, Der CJ (1997) Dbl family proteins. Biochim Biophys Acta 1332:F1–F23

    CAS  PubMed  Google Scholar 

  10. Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y (1994) Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269:62–65

    CAS  PubMed  Google Scholar 

  11. Baumeister MA, Rossman KL, Sondek J, Lemmon MA (2006) The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 400:563–572. doi:10.1042/BJ20061020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, Smyrk TC, Chari ST, Urrutia R, Billadeau DD (2005) Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 7:39–49. doi:10.1016/j.ccr.2004.11.024

    Article  CAS  PubMed  Google Scholar 

  13. Citterio C, Menacho-Marquez M, Garcia-Escudero R, Larive RM, Barreiro O, Sanchez-Madrid F, Paramio JM, Bustelo XR (2012) The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 5:ra71. doi:10.1126/scisignal.2002962

    Article  PubMed  Google Scholar 

  14. Wang H, Li Y, Wang Y, Han ZG, Cai B (2012) C9orf100, a new member of the Dbl-family guanine nucleotide exchange factors, promotes cell proliferation and migration in hepatocellular carcinoma. Mol Med Rep 5:1169–1174. doi:10.3892/mmr.2012.783

    Article  CAS  PubMed  Google Scholar 

  15. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180. doi:10.1038/nrm1587

    Article  CAS  PubMed  Google Scholar 

  16. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol 4:64. doi:10.3389/fonc.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  17. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121. doi:10.1038/sj.onc.1210394

    Article  CAS  PubMed  Google Scholar 

  18. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY, Mok YJ, Kim YH, Ji J, Yeh TS, Button P, Sirzen F, Noh SH, investigators Ct (2012) Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 379:315–321. doi:10.1016/S0140-6736(11)61873-4

    Article  CAS  PubMed  Google Scholar 

  19. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi Y, Imamura H, Higashino M, Yamamura Y, Kurita A, Arai K (2007) Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med 357:1810–1820. doi:10.1056/NEJMoa072252

    Article  CAS  PubMed  Google Scholar 

  20. Sasako M, Sakuramoto S, Katai H, Kinoshita T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T, Ohashi Y (2011) Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol 29:4387–4393. doi:10.1200/JCO.2011.36.5908

    Article  CAS  PubMed  Google Scholar 

  21. Xia P, Xu XY (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 5:1602–1609

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81302490).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfang Chen or Guoquan Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, M., Tao, X. et al. ARHGEF39 promotes gastric cancer cell proliferation and migration via Akt signaling pathway. Mol Cell Biochem 440, 33–42 (2018). https://doi.org/10.1007/s11010-017-3153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3153-3

Keywords

Navigation