Molecular and Cellular Biochemistry

, Volume 440, Issue 1–2, pp 11–22 | Cite as

Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis

  • Nagarethinam Baskaran
  • Govindan Sadasivam Selvam
  • Subramani Yuvaraj
  • Albert Abhishek


Over the decades, the survival rates for oral cancer have not improved despite development in novel diagnostic and therapeutic strategies. Therefore, the present study is aimed at investigating the chemopreventive potential of parthenolide in DMBA-induced hamster buccal pouch carcinogenesis. The hamsters were divided into 4 groups (n = 6/group). Group I was treated as control. Groups II and III were painted with a solution of 0.5% DMBA three times per week for 14 weeks on the left buccal pouches. In addition, group III were orally administrated with parthenolide 2 mg/kg b.w on days alternate to the DMBA application. Group IV received only parthenolide. At the end of 14th week all hamsters were sacrificed. Buccal tissues from all hamsters were evaluated for histopathology. Biochemical studies were carried out using plasma, liver, and buccal mucosa of control and experimental hamsters. Gene and protein expression studies of apoptotic markers p53, Bcl-2, and Bax were performed. The results showed 100% tumor formation and marked alterations in histopathology, status of detoxification enzymes, lipid peroxidation, and antioxidant profile in group II hamsters. Oral administration of parthenolide completely prevented tumor formation and significantly reduced the severity of histopathological changes in group III hamsters. The status of detoxification enzymes, lipid peroxidation, and antioxidants were significantly restored in parthenolide treated group compared to group II hamsters. The apoptotic gene p53 and antiapoptotic gene Bcl-2 were significantly down regulated; whereas, pro-apoptotic gene Bax was up regulated in group III hamsters compared to group II. The results of the present study suggest that parthenolide have potent chemopreventive, antioxidant, and apoptotic effect in DMBA-induced oral carcinogenesis.


Parthenolide Oral cancer Chemoprevention Antioxidant DMBA 



Financial support from University Grants Commission (UGC), New Delhi to Dr. N. Baskaran in the form of UGC-Post Doctoral Fellow (Ref: No. F./PDFSS-2013-14-SC-TAM-4741 dt. On 03/07/2014) is gratefully acknowledged. Further, Author gratefully acknowledged to Dr.G.S.Selvam, Professor and Head, Department of Biochemistry, Madurai Kamaraj University, Madurai for his valuable guidance.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Laprise C, Madathil SA, Allison P, Abraham P, Raghavendran A, Shahul HP, Thekke Purakkal AS, Castonguay G, Coutlee F, Schlecht NF, Rousseau MC (2016) No role for human papillomavirus infection in oral cancers in a region in southern India. Int J Cancer 138:912–917CrossRefPubMedGoogle Scholar
  2. 2.
    Gupta B, Ariyawardana A, Johnson MM (2013) Oral cancer in India continues in epidemic proportions: evidence base and policy initiatives. Int Dent J 63:12–25CrossRefPubMedGoogle Scholar
  3. 3.
    Wang ZQ, Liu K, Huo ZJ, Li XC, Wang M, Liu P, Pang B, Wang SJA (2015) Cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnol 13:63CrossRefGoogle Scholar
  4. 4.
    Ray G, Husain SA (2002) Oxidants, antioxidants and carcinogenesis. Indian J Exp Biol 40:1213–1232PubMedGoogle Scholar
  5. 5.
    Guven M, Ozturk B, Sayal A, Ozet A (2000) Lipid peroxidation and antioxidant system in the blood of patients with Hodgkin’s disease. Clin Biochem 33:209–212CrossRefPubMedGoogle Scholar
  6. 6.
    Patel BP, Rawal UM, Dave TK, Rawal RM, Shukla SN, Shah PM, Patel PS (2007) Lipid peroxidation, total antioxidant status, and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Integr Cancer Ther 6:365–372CrossRefPubMedGoogle Scholar
  7. 7.
    Manikandan P, Letchoumy PV, Gopalakrishnan M, Nagini S (2008) Evaluation of Azadirachta indica leaf fractions for in vitro antioxidant potential and in vivo modulation of biomarkers of chemoprevention in the hamster buccal pouch carcinogenesis model. Food Chem Toxicol 46:2332–2343CrossRefPubMedGoogle Scholar
  8. 8.
    Anand MA, Suresh K (2014) Biochemical profiling and chemopreventive activity of phloretin on 7,12-dimethylbenz(a) anthracene induced oral carcinogenesis in male golden Syrian hamsters. Toxicol Int 21:179–185CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Goulart Filho JA, Nonaka CF, da Costa Miguel MC, de Almeida Freitas R, Galvao HC (2009) Immunoexpression of cyclooxygenase-2 and p53 in oral squamous cell carcinoma. Am J Otolaryngol 30:89–94CrossRefPubMedGoogle Scholar
  10. 10.
    Vinothkumar V, Manoharan S, Sindhu G, Nirmal MR, Vetrichelvi V (2012) Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Mol Cell Biochem 369:17–25CrossRefPubMedGoogle Scholar
  11. 11.
    Garg R, Ingle A, Maru G (2008) Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-kappaB pathway to alter cellular responses during hamster buccal pouch carcinogenesis. Toxicol Appl Pharmacol 232:428–439CrossRefPubMedGoogle Scholar
  12. 12.
    Baskaran N, Manoharan S, Balakrishnan S, Pugalendhi P (2010) Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague–Dawley rats. Eur J Pharmacol 637:22–29CrossRefPubMedGoogle Scholar
  13. 13.
    Silvan S, Manoharan S (2013) Apigenin prevents deregulation in the expression pattern of cell-proliferative, apoptotic, inflammatory and angiogenic markers during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Arch Oral Biol 58:94–101CrossRefPubMedGoogle Scholar
  14. 14.
    Knight DW (1995) Feverfew: chemistry and biological activity. Nat Prod Rep 12:271–276CrossRefPubMedGoogle Scholar
  15. 15.
    Jain NK, Kulkarni SK (1999) Antinociceptive and antiinflammatory effects of Tanacetum parthenium L. extract in mice and rats. J Ethnopharmacol 68:251–259CrossRefPubMedGoogle Scholar
  16. 16.
    Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 8:759–766CrossRefPubMedGoogle Scholar
  17. 17.
    Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Diaz JA, de Souza W, Nakamura CV (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 49:176–182CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Herrera F, Martin V, Rodriguez-Blanco J, García-Santos G, Antolin I, Rodriguez C (2005) Intracellular redox state regulation by parthenolide. Biochem Biophys Res Commun 332:321–325CrossRefPubMedGoogle Scholar
  19. 19.
    Lesiak K, Koprowska K, Zalesna I, Nejc D, Duchler M, Czyz M (2010) Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res 20:21–34CrossRefPubMedGoogle Scholar
  20. 20.
    Mohsenzadeh F, Chehregani A, Amiri H (2011) Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium indifferent developmental stages. Pharm Biol 49:920–926CrossRefPubMedGoogle Scholar
  21. 21.
    Mathema VB, Koh YS, Thakuri BC, Sillanpaa M (2012) Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 35:560–565CrossRefPubMedGoogle Scholar
  22. 22.
    Yang Q, Wan L, Zhou Z, Li Y, Yu Q, Liu L, Li B, Guo C (2013) Parthenolide from Parthenium integrifolium reduces tumor burden and alleviate cachexia symptoms in the murine CT-26 model of colorectal carcinoma. Phytomedicine 20:992–998CrossRefPubMedGoogle Scholar
  23. 23.
    Lu C, Wang W, Jia Y, Liu X, Tong Z, Li B (2014) Inhibition of AMPK/autophagy potentiates parthenolide-induced apoptosis in human breast cancer cells. J Cell Biochem 115:1458–1466CrossRefPubMedGoogle Scholar
  24. 24.
    Al-Fatlawi AA, Al-Fatlawi AA, Irshad Rahisuddin M, Ahmad A (2015) Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell line. Pharm Biol 53:104–109CrossRefPubMedGoogle Scholar
  25. 25.
    Omura T, Sato R (1964) The carbon monoxide binding pigment of liver microsomes. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  26. 26.
    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefPubMedGoogle Scholar
  27. 27.
    Habig WH, Pabst MJ, Jakoby WB (1974) WBC glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  28. 28.
    Ernster L (1967) DT-Diaphorase. In: Estabrook RW, Pullman ME (eds) Methods enzymol, vol 10. Academic Press, New York, pp 309–317Google Scholar
  29. 29.
    Yagi K (1987) Lipid peroxides and human diseases. Chem Phys Lipids 45:337–351CrossRefPubMedGoogle Scholar
  30. 30.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  31. 31.
    Beutler E, Kelly BM (1963) The effect of sodium nitrite on red cell GSH. Experientia 19:96–97CrossRefPubMedGoogle Scholar
  32. 32.
    Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522CrossRefPubMedGoogle Scholar
  33. 33.
    Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147CrossRefPubMedGoogle Scholar
  34. 34.
    Palan PR, Mikhail MS, Basu J, Romney SL (1991) Plasma levels of antioxidant beta-carotene and alpha-tocopherol in uterine cervix dysplasias and cancer. Nutr Cancer 15:13–20CrossRefPubMedGoogle Scholar
  35. 35.
    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132PubMedGoogle Scholar
  36. 36.
    Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394CrossRefPubMedGoogle Scholar
  37. 37.
    Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590CrossRefPubMedGoogle Scholar
  38. 38.
    Sasikumar P, Gomathi S, Anbazhagan K, Abhishek A, Paul E, Vasudevan V, Sasikumar S, Selvam GS (2014) Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 21:86CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nagini S, Letchoumy PV, Cr TR (2009) Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol 45:31–37CrossRefGoogle Scholar
  40. 40.
    Nakagawa K, Yamamura K, Maeda S, Ichihashi M (1994) Bcl-2 expression in epidermal keratinocytic diseases. Cancer 74:1720–1724CrossRefPubMedGoogle Scholar
  41. 41.
    Manoharan S, Vasanthaselvan M, Silvan S, Baskaran N, Kumar Singh A, Vinoth Kumar V (2010) Carnosic acid: a potent chemopreventive agent against oral carcinogenesis. Chem Biol Interact 188:616–622CrossRefPubMedGoogle Scholar
  42. 42.
    Silvan S, Manoharan S, Baskaran N, Anusuya C, Karthikeyan S, Prabhakar MM (2011) Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur J Pharmacol 670:571–577CrossRefPubMedGoogle Scholar
  43. 43.
    Hayashi S, Koshiba K, Hatashita M, Sato T, Jujo Y, Suzuki R, Tanaka Y, Shioura H (2011) Thermosensitization and induction of apoptosis or cell-cycle arrest via the MAPK cascade by parthenolide, an NF-kappaB inhibitor, in human prostate cancer androgen- independent cell lines. Int J Mol Med 28:1033–1042PubMedGoogle Scholar
  44. 44.
    DAnneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S, Di Marco P, Emanuele S, Di Fiore R, Guercio A, Vento R, Tesoriere G (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 4:891CrossRefGoogle Scholar
  45. 45.
    Yu HJ, Jung JY, Jeong JH, Cho SD, Lee JS (2015) Induction of apoptosis by parthenolide in human oral cancer cell lines and tumor xenografts. Oral Oncol 51:602–609CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao X, Liu X, Su L (2014) Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells. J Exp Clin Cancer Res 33:3CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Koprowska K, Czyz M (2010) Molecular mechanisms of parthenolide’s action: old drug with a new face. Postepy Hig Med Dosw 64:100–114Google Scholar
  48. 48.
    Rajasekaran D, Manoharan S, Prabhakar MM, Manimaran A (2015) Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Hum Exp Toxicol 34:911–921CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nagarethinam Baskaran
    • 1
    • 2
  • Govindan Sadasivam Selvam
    • 1
  • Subramani Yuvaraj
    • 1
  • Albert Abhishek
    • 1
  1. 1.Cancer Biology Unit, Department of Biochemistry, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Chemistry and BiosciencesSASTRA University, Srinivasa Ramanujan Centre (SRC)KumbakonamIndia

Personalised recommendations