Molecular and Cellular Biochemistry

, Volume 428, Issue 1–2, pp 203–212 | Cite as

Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure

  • Wen Li
  • Li Wang
  • Xiaoqian Chu
  • Huantian Cui
  • Yuhong Bian
Article

Abstract

At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

Keywords

Icariin Human umbilical cord mesenchymal stem cells Chronic renal failure Kidney function 

Notes

Acknowledgements

This work was performed at Tianjin University of Traditional Chinese Medicine, China, and was supported by a Grant from the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC26100) and Program for Changjiang Scholars and Innovative Research Team University (PCSIRT): IRT_14R41.

References

  1. 1.
    NAHAS ME (2005) The global challenge of chronic kidney disease. Kidney Int 68:2918–2929CrossRefPubMedGoogle Scholar
  2. 2.
    PLATT BSaJL (2001) Physiologic and immunologic hurdles to xenotransplantation. J Am Soc Nephrol 12:182–193Google Scholar
  3. 3.
    Morigi M (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804. doi: 10.1097/01.asn.0000128974.07460.34 CrossRefPubMedGoogle Scholar
  4. 4.
    Togel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C (2009) Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18:475–485. doi: 10.1089/scd.2008.0092 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337. doi: 10.1634/stemcells.2004-0013 CrossRefPubMedGoogle Scholar
  6. 6.
    Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM, Chin FY, Gosiewska A, Mistry SK (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25:602–611. doi: 10.1634/stemcells.2006-0308 CrossRefPubMedGoogle Scholar
  7. 7.
    Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 3:e1451. doi: 10.1371/journal.pone.0001451 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rachakatla RS, Pyle MM, Ayuzawa R, Edwards SM, Marini FC, Weiss ML, Tamura M, Troyer D (2008) Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Invest 26:662–670. doi: 10.1080/07357900701871134 CrossRefPubMedGoogle Scholar
  9. 9.
    Cao H, Qian H, Xu W, Zhu W, Zhang X, Chen Y, Wang M, Yan Y, Xie Y (2010) Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett 32:725–732. doi: 10.1007/s10529-010-0207-y CrossRefPubMedGoogle Scholar
  10. 10.
    Velikago IibisP and sad. IS-Pb (1920) Trudy Imperatorskago S.-Peterburgskago botanicheskago sada. Acta Horti Petropolitani. Imperatorskiǐ S.-Peterburgskiǐ botanicheskiǐ sad., S.-PeterburgGoogle Scholar
  11. 11.
    Sun ZB, Wang JW, Xiao H, Zhang QS, Kan WS, Mo FB, Hu S, Ye SN (2015) Icariin may benefit the mesenchymal stem cells of patients with steroid-associated osteonecrosis by ABCB1-promoter demethylation: a preliminary study. Osteoporos Int 26:187–197. doi: 10.1007/s00198-014-2809-z CrossRefPubMedGoogle Scholar
  12. 12.
    Le ZLC, Tie Wu (2007) Effect of herba epimedii on renal bone morphogenetic protein-7 in male rats with kidney YANG in sufficiency. J Guangdong Med Coll 25:371–386.Google Scholar
  13. 13.
    HU An-kang ZX-r, YUAN Hong-hua (2011) Establishment of two rat models of chronic renal failure. Acta Lab Anim Sci Sin 19:34–38.Google Scholar
  14. 14.
    Wang J, Wang F, Yun H, Zhang H, Zhang Q (2012) Effect and mechanism of fucoidan derivatives from Laminaria japonica in experimental adenine-induced chronic kidney disease. J Ethnopharmacol 139:807–813. doi: 10.1016/j.jep.2011.12.022 CrossRefPubMedGoogle Scholar
  15. 15.
    Behr L, Hekmati M, Lucchini A, Houcinet K, Faussat AM, Borenstein N, Noel LH, Lelievre-Pegorier M, Laborde K (2009) Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury. Cell Prolif 42:284–297. doi: 10.1111/j.1365-2184.2009.00591.x CrossRefPubMedGoogle Scholar
  16. 16.
    Okabe C, Borges RL, de Almeida DC, Fanelli C, Barlette GP, Machado FG, Arias SC, Malheiros DM, Camara NO, Zatz R and Fujihara CK (2013) NF-kappaB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. Am J Physiol Renal Physiol 305:F155–F163. doi: 10.1152/ajprenal.00491.2012 CrossRefGoogle Scholar
  17. 17.
    Ali BH, Al-Husseni I, Beegam S, Al-Shukaili A, Nemmar A, Schierling S, Queisser N, Schupp N (2013) Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PLoS ONE 8:e55242. doi: 10.1371/journal.pone.0055242 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Susanne B Nicholas JY, Amin Aminzadeh, Keith C Norris, Albert Crum, Nosratola D Vaziri (2012) Salutary effects of a novel oxidative stress modulator on adenine-induced chronic progressive tubulointerstitial nephropathy. Am J Transl Res 4:257–268PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang JF, Li G, Chan CY, Meng CL, Lin MC, Chen YC, He ML, Leung PC and Kung HF (2010) Flavonoids of herba epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/beta-catenin signaling pathway. Mol Cell Endocrinol 314:70–74. doi: 10.1016/j.mce.2009.08.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313. doi: 10.1124/pr.57.3.3 CrossRefPubMedGoogle Scholar
  21. 21.
    Takahito ITO, Suzuki A Enyu Imai, Okabe Masaru, Hori Masatsugu (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635Google Scholar
  22. 22.
    Zhai YK, Ge BF, Chen KM, Ma HP, Ming LG, Li ZF (2010) Comparative study on theosteogenic differentiation of rat bone marrow stromal cells effected by Icariin and IcarisideÒ. J Chin Med Mater 33:1896–1900.Google Scholar
  23. 23.
    Yang Li, Zhang Rong-hua, Zhu Xiao-feng, Cai Yu, Huang Feng (2010) Effect of icariin on the expression of transforming growth factor-beta 1 and bone morphogenetic protein-2 in the process of mesenchymal stem cells differentiation into osteoblasts. J Clin Rehabil Tissue Eng Res 14:3518–3522. doi: 10.3969/j.issn.1673-8225.2010.19.020 Google Scholar
  24. 24.
    Semedo P, Palasio CG, Oliveira CD, Feitoza CQ, Goncalves GM, Cenedeze MA, Wang PM, Teixeira VP, Reis MA, Pacheco-Silva A, Camara NO (2009) Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int Immunopharmacol 9:677–682. doi: 10.1016/j.intimp.2008.12.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Borovecki F, Jelic M, Grgurevic L, Sampath KT, Bosukonda D, Vukicevic S (2004) Bone morphogenetic protein-7 from serum of pregnant mice is available to the fetus through placental transfer during early stages of development. Nephron Exp Nephrol 97:e26–e32. doi: 10.1159/000077595 CrossRefPubMedGoogle Scholar
  26. 26.
    Gould SE, Day M, Jones SS, Dorai H (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61:51–60. doi: 10.1046/j.1523-1755.2002.00103.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wen Li
    • 1
  • Li Wang
    • 2
  • Xiaoqian Chu
    • 3
  • Huantian Cui
    • 4
  • Yuhong Bian
    • 4
  1. 1.School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Tumor Microenvironment and Neurovascular RegulationNankai UniversityTianjinChina
  2. 2.Tianjin Second People’s HospitalTianjinChina
  3. 3.Tianjin People’s HospitalTianjinChina
  4. 4.Tianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations