Molecular and Cellular Biochemistry

, Volume 428, Issue 1–2, pp 193–202 | Cite as

Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells



The kidney is essential in the maintenance of in vivo homeostasis by body fluid and electrolyte conservation and metabolic waste removal. Previously, we reported the expression of a novel G protein family (Tas2rs), which includes bitter taste receptors, in the kidney tubule system, including the nephrons and the collecting duct system. Bitter taste receptors could affect kidney function via Ca2+ intake. Alkaloids such as phenylthiocarbamide stimulate these receptors and cause an increase in Ca2+ intake. In this study, we determined the expression of bitter taste receptors in the immature kidney and small intestine and in primary renal epithelial cells and M-1 (collecting tubule cell line) cells, by using QPCR and immunostaining. We found no expression of bitter taste receptors in the immature kidney and small intestine several days after birth; the relative abundance of Tas2rs transcripts varied depending on the developmental stage. Tas2rs were expressed in primary renal epithelial cells and M-1 cells. The traditional Chinese medicinal plant extracts phellodendrine and coptisine caused a rapid rise in intracellular Ca2+ concentration, which was inhibited by the phospholipase C (PLC) inhibitor U-73122. Thus, phellodendrine and coptisine could change the physiological status of renal cells in vitro by mediation of bitter taste receptors in a PLC-dependent manner. Our results provide new insights on the expression and role of bitter taste receptors in renal development and function.


Kidney Bitter taste receptors Primary renal tubular epithelial cells M-1 cells Alkaloid 



The present study was supported by the Chinese National Natural Science Foundation (Grant Nos. 31571171 and 31100838), the Shanghai Natural Science Foundation (Grant No. 15ZR1414900), the Key Laboratory of Medical Electrophysiology (Southwest Medical University) of Ministry of Education of China (Grant No. 201502), and the Young Teachers of Shanghai Universities Training Program.

Supplementary material

11010_2016_2929_MOESM1_ESM.tif (238 kb)
Supplementary material 1 (TIF 237 KB)


  1. 1.
    Vainio S, Lin Y (2002) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3:533–543. doi: 10.1038/nrg842 CrossRefPubMedGoogle Scholar
  2. 2.
    Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 291:G171–G177. doi: 10.1152/ajpgi.00073.2006 CrossRefPubMedGoogle Scholar
  3. 3.
    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A 104:15075–15080. doi: 10.1073/pnas.0706678104 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Treesukosol Y, Smith KR, Spector AC (2011) The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav 105:14–26. doi: 10.1016/j.physbeh.2011.02.030 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304. doi: 10.1038/nm.2237 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tizzano M, Cristofoletti M, Sbarbati A, Finger TE (2011) Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med 11:3. doi: 10.1186/1471-2466-11-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Elliott RA, Kapoor S, Tincello DG (2011) Expression and distribution of the sweet taste receptor isoforms T1R2 and T1R3 in human and rat bladders. J Urol 186:2455–2462. doi: 10.1016/j.juro.2011.07.083 CrossRefPubMedGoogle Scholar
  8. 8.
    Nakagawa Y (2011) Function of sweet taste receptor in pancreatic beta-cells. Seikagaku 83:647–651PubMedGoogle Scholar
  9. 9.
    Taniguchi K (2004) Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. J Vet Med Sci 66:1311–1314CrossRefPubMedGoogle Scholar
  10. 10.
    Ren X, Zhou L, Terwilliger R, Newton SS, de Araujo IE (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3:12. doi: 10.3389/neuro.07.012.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li F, Zhou M (2012) Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol Hum Reprod 18:289–297. doi: 10.1093/molehr/gas005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meyer D, Voigt A, Widmayer P, Borth H, Huebner S, Breit A, Marschall S, de Angelis MH, Boehm U, Meyerhof W, Gudermann T, Boekhoff I (2012) Expression of Tas1 taste receptors in mammalian spermatozoa: functional role of Tas1r1 in regulating basal Ca(2)(+) and cAMP concentrations in spermatozoa. PLoS ONE 7:e32354. doi: 10.1371/journal.pone.0032354 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Foster SR, Porrello ER, Purdue B, Chan HW, Voigt A, Frenzel S, Hannan RD, Moritz KM, Simmons DG, Molenaar P, Roura E, Boehm U, Meyerhof W, Thomas WG (2013) Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS ONE 8:e64579. doi: 10.1371/journal.pone.0064579 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Clark AA, Dotson CD, Elson AE, Voigt A, Boehm U, Meyerhof W, Steinle NI, Munger SD (2015) TAS2R bitter taste receptors regulate thyroid function. FASEB J 29:164–172. doi: 10.1096/fj.14-262246 CrossRefPubMedGoogle Scholar
  15. 15.
    Wolfle U, Elsholz FA, Kersten A, Haarhaus B, Schumacher U and Schempp CM (2016) Expression and functional activity of the human bitter taste receptor TAS2R38 in human placental tissues and JEG-3 cells. Molecules 21. doi: 10.3390/molecules21030306 Google Scholar
  16. 16.
    Liu X, Gu F, Jiang L, Chen F, Li F (2015) Expression of bitter taste receptor Tas2r105 in mouse kidney. Biochem Biophys Res Commun 458:733–738. doi: 10.1016/j.bbrc.2015.01.089 CrossRefPubMedGoogle Scholar
  17. 17.
    Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99:2392–2397. doi: 10.1073/pnas.042617699 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grenier D, La VD (2011) Proteases of Porphyromonas gingivalis as important virulence factors in periodontal disease and potential targets for plant-derived compounds: a review article. Curr Drug Targets 12:322–331CrossRefPubMedGoogle Scholar
  19. 19.
    Kwon HA, Kwon YJ, Kwon DY, Lee JH (2008) Evaluation of antibacterial effects of a combination of coptidis rhizoma, mume fructus, and schizandrae fructus against salmonella. Int J Food Microbiol 127:180–183. doi: 10.1016/j.ijfoodmicro.2008.06.020 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Q, Piao XL, Piao XS, Lu T, Wang D, Kim SW (2011) Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol 49:61–69. doi: 10.1016/j.fct.2010.09.032 CrossRefPubMedGoogle Scholar
  21. 21.
    Jang MH, Kim HY, Kang KS, Yokozawa T, Park JH (2009) Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch Pharm Res 32:341–345. doi: 10.1007/s12272-009-1305-z CrossRefPubMedGoogle Scholar
  22. 22.
    Yan D, Jin C, Xiao XH, Dong XP (2008) Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J Biochem Biophys Methods 70:845–849. doi: 10.1016/j.jbbm.2007.07.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Auyeung KK, Ko JK (2009) Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation. Int J Mol Med 24:571–577PubMedGoogle Scholar
  24. 24.
    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170. doi: 10.1093/chemse/bjp092 CrossRefPubMedGoogle Scholar
  25. 25.
    Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23. doi: 10.1172/JCI30227 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792–G802. doi: 10.1152/ajpgi.00074.2006 CrossRefPubMedGoogle Scholar
  27. 27.
    Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, Murovets VO, Reed DR, Zolotarev VA, Beauchamp GK (2011) Genetics of sweet taste preferences. Flavour Fragr J 26:286–294. doi: 10.1002/ffj.2074 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24:7636–7642. doi: 10.1128/Mcb.24.17.7636.7642.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938. doi: 10.1038/nature05084 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Neiss WF (1982) Histogenesis of the loop of Henle in the rat kidney. Anat Embryol 164:315–330CrossRefPubMedGoogle Scholar
  31. 31.
    Kim J, Lee GS, Tisher CC, Madsen KM (1996) Role of apoptosis in development of the ascending thin limb of the loop of Henle in rat kidney. Am J Physiol 271:F831–F845.Google Scholar
  32. 32.
    Jung JY, Kim YH, Cha JH, Han KH, Kim MK, Madsen KM, Kim J (2002) Expression of aldose reductase in developing rat kidney. Am J Physiol Renal Physiol 283:F481–F491. doi: 10.1152/ajprenal.00332.2001 Google Scholar
  33. 33.
    Kim YH, Kim DU, Han KH, Jung JY, Sands JM, Knepper MA, Madsen KM, Kim J (2002) Expression of urea transporters in the developing rat kidney. Am J Physiol Renal Physiol 282:F530–F540. doi: 10.1152/ajprenal.00246.2001 Google Scholar
  34. 34.
    Song J, Hu X, Khan O, Tian Y, Verbalis JG, Ecelbarger CA (2004) Increased blood pressure, aldosterone activity, and regional differences in renal ENaC protein during vasopressin escape. Am J Physiol Renal Physiol 287:F1076-83. doi: 10.1152/ajprenal.00075.2004 Google Scholar
  35. 35.
    Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J (2007) Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am J Physiol Renal Physiol 292:F269-77. doi: 10.1152/ajprenal.00145.2006 Google Scholar
  36. 36.
    Li JY, Wang XB, Luo JG, Kong LY (2015) Seasonal variation of alkaloid contents and anti-inflammatory activity of rhizoma coptidis based on fingerprints combined with chemometrics methods. J Chromatogr Sci 53:1131–1139. doi: 10.1093/chromsci/bmu175 CrossRefPubMedGoogle Scholar
  37. 37.
    Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol 580:70–79. doi: 10.1016/j.ejphar.2007.11.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Yu Y, Hao G, Zhang Q, Hua W, Wang M, Zhou W, Zong S, Huang M, Wen X (2015) Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol 97:173–177. doi: 10.1016/j.bcp.2015.07.012 CrossRefPubMedGoogle Scholar
  39. 39.
    Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, Meng X (2016) Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol 780:106–114. doi: 10.1016/j.ejphar.2016.03.037 CrossRefPubMedGoogle Scholar
  40. 40.
    Li L, Huang T, Tian C, Xiao Y, Kou S, Zhou X, Liu S, Ye X, Li X (2016) The defensive effect of phellodendrine against AAPH-induced oxidative stress throughregulating the AKT/NF-kappaB pathway in zebrafish embryos. Life Sci. doi: 10.1016/j.lfs.2016.05.032 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Life SciencesShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations