Molecular and Cellular Biochemistry

, Volume 428, Issue 1–2, pp 161–170 | Cite as

Tubulin alpha 8 is expressed in hepatic stellate cells and is induced in transformed hepatocytes

  • Lisa Rein-Fischboeck
  • Rebekka Pohl
  • Elisabeth M. Haberl
  • Sebastian Zimny
  • Maximilian Neumann
  • Kristina Eisinger
  • Thomas S. Weiss
  • Sabrina Krautbauer
  • Christa Buechler


Tubulin alpha 8 (TUBA8) is highly abundant in murine liver tumors suggesting a role in hepatocellular carcinoma (HCC). Non-alcoholic steatohepatitis (NASH) is a risk factor for HCC. In mice that are fed with a methionine-choline deficient diet for two weeks to induce advanced murine NASH, we do see increased hepatic levels of TUBA8 protein. In animals given a high-fat diet for 14 weeks or an atherogenic diet for 12 weeks, hepatic TUBA8 is unchanged. TUBA8 is highly expressed in human hepatic stellate cells (HSC) and co-localizes with the HSC marker desmin in the murine liver. Inflammatory (TNF, LPS, IL-6) and profibrotic mediators (TGF-beta) do not regulate TUBA8 in HepG2 cells, primary HSC and the HSC cell line LX-2, when stimulated for 24 h. Agonists of the farnesoid X receptor and peroxisome proliferator activated receptor gamma, which are nuclear receptors involved in NASH and HCC pathophysiology, have no effect on TUBA8 in HepG2 and LX-2 cells. In human HCC tissues of 18 patients TUBA8 is significantly upregulated when compared to the corresponding non-tumorous tissues. Compared to non-transformed hepatocytes, TUBA8 protein is strongly expressed in transformed cells. Thus, TUBA8 is a marker of HSC whose cell number is increased in NASH, while higher levels in HCC may be related to induction of TUBA8 in parenchymal cells.


Liver fibrosis Fatty liver Hepatocellular carcinoma Inflammation 



The study was supported by the German Research Foundation (BU 1141/12 − 1) to CB and the German Federal Ministry of Education and Research (Virtual Liver Network Grants 0315753) to TSW. The authors are grateful to Professor Charalampos Aslanidis for helpful suggestions.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Experimental procedures complied with the guidelines of the charitable state controlled foundation Human Tissue and Cell Research. The study was approved by the local ethical committee of the University of Regensburg. Written informed patient’s consent was obtained. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal studies were authorized by the University of Regensburg Laboratory Animal Committee and complied with the German Law on Animal Protection and the Institute for Laboratory Animal Research Guide for the Care and Use of Laboratory Animals, 1999. Experiments were conducted according to institutional and governmental regulations for animal use (Government of the Oberpfalz).

Supplementary material

11010_2016_2926_MOESM1_ESM.tif (2 mb)
Supplementary material 1 (TIF 2030 KB)


  1. 1.
    Buechler C, Wanninger J, Neumeier M (2011) Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol 17:2801–2811. doi: 10.3748/wjg.v17.i23.2801 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Buechler C, Weiss TS (2011) Does hepatic steatosis affect drug metabolizing enzymes in the liver? Curr Drug Metab 12:24–34CrossRefPubMedGoogle Scholar
  3. 3.
    Yeh MM, Brunt EM (2014) Pathological features of fatty liver disease. Gastroenterology 147:754–764. doi: 10.1053/j.gastro.2014.07.056 CrossRefPubMedGoogle Scholar
  4. 4.
    Konno Y, Negishi M, Kodama S (2008) The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab Pharmacokinet 23:8–13CrossRefPubMedGoogle Scholar
  5. 5.
    Yamazaki Y, Kakizaki S, Horiguchi N, Sohara N, Sato K, Takagi H, Mori M, Negishi M (2007) The role of the nuclear receptor constitutive androstane receptor in the pathogenesis of non-alcoholic steatohepatitis. Gut 56:565–574. doi: 10.1136/gut.2006.093260 CrossRefPubMedGoogle Scholar
  6. 6.
    Takizawa D, Kakizaki S, Horiguchi N, Yamazaki Y, Tojima H, Mori M (2011) Constitutive active/androstane receptor promotes hepatocarcinogenesis in a mouse model of non-alcoholic steatohepatitis. Carcinogenesis 32:576–583. doi: 10.1093/carcin/bgq277 CrossRefPubMedGoogle Scholar
  7. 7.
    Kamino H, Moore R, Negishi M (2011) Role of a novel CAR-induced gene, TUBA8, in hepatocellular carcinoma cell lines. Cancer Genet 204:382–91. doi: 10.1016/j.cancergen.2011.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stanchi F, Corso V, Scannapieco P, Ievolella C, Negrisolo E, Tiso N, Lanfranchi G, Valle G (2000) TUBA8: a new tissue-specific isoform of alpha-tubulin that is highly conserved in human and mouse. Biochem Biophys Res Commun 270:1111–1118. doi: 10.1006/bbrc.2000.2571 CrossRefPubMedGoogle Scholar
  9. 9.
    La Merrill M, Kuruvilla BS, Pomp D, Birnbaum LS, Threadgill DW (2009) Dietary fat alters body composition, mammary development, and cytochrome p450 induction after maternal TCDD exposure in DBA/2 J mice with low-responsive aryl hydrocarbon receptors. Environ Health Perspect 117:1414–1419. doi: 10.1289/ehp.0800530 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yoshinari K, Takagi S, Sugatani J, Miwa M (2006) Changes in the expression of cytochromes P450 and nuclear receptors in the liver of genetically diabetic db/db mice. Biol Pharm Bull 29:1634–1638CrossRefPubMedGoogle Scholar
  11. 11.
    Damm G, Pfeiffer E, Burkhardt B, Vermehren J, Nussler AK, Weiss TS (2013) Human parenchymal and non-parenchymal liver cell isolation, culture and characterization. Hepatol Int 7:951–8. doi: 10.1007/s12072-013-9475-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Greene FL, Sobin LH (2009) A worldwide approach to the TNM staging system: collaborative efforts of the AJCC and UICC. J Surg Oncol 99:269–272. doi: 10.1002/jso.21237 CrossRefPubMedGoogle Scholar
  13. 13.
    Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, Hellerbrand C, Zimara N, Schaffler A, Aslanidis C, Buechler C (2011) Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 152:26–35. doi: 10.1210/en.2010-1157 CrossRefPubMedGoogle Scholar
  14. 14.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  15. 15.
    Ballardini G, Fallani M, Biagini G, Bianchi FB, Pisi E (1988) Desmin and actin in the identification of Ito cells and in monitoring their evolution to myofibroblasts in experimental liver fibrosis. Virchows Arch B 56:45–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ramboer E, Vanhaecke T, Rogiers V, Vinken M (2015) Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 1250:53–76. doi: 10.1007/978-1-4939-2074-7_4 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA (2016) Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta 1859:1083–1099. doi: 10.1016/j.bbagrm.2016.03.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Morelli A, Pruzanski M, Pellicciari R (2005) Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther 315:58–68. doi: 10.1124/jpet.105.085597 CrossRefPubMedGoogle Scholar
  19. 19.
    Eisinger K, Krautbauer S, Hebel T, Schmitz G, Aslanidis C, Liebisch G, Buechler C (2014) Lipidomic analysis of the liver from high-fat diet induced obese mice identifies changes in multiple lipid classes. Exp Mol Pathol 97:37–43. doi: 10.1016/j.yexmp.2014.05.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Krautbauer S, Wanninger J, Eisinger K, Hader Y, Beck M, Kopp A, Schmid A, Weiss TS, Dorn C, Buechler C (2013) Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp Mol Pathol 95:199–205. doi: 10.1016/j.yexmp.2013.07.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392–1403. doi: 10.1002/hep.21874 CrossRefPubMedGoogle Scholar
  22. 22.
    Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816. doi: 10.2353/ajpath.2007.070112 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sahai A, Pan X, Paul R, Malladi P, Kohli R, Whitington PF (2006) Roles of phosphatidylinositol 3-kinase and osteopontin in steatosis and aminotransferase release by hepatocytes treated with methionine-choline-deficient medium. Am J Physiol Gastrointest Liver Physiol 291:G55–G62. doi: 10.1152/ajpgi.00360.2005 CrossRefPubMedGoogle Scholar
  24. 24.
    Kuramitsu Y, Takashima M, Yokoyama Y, Iizuka N, Tamesa T, Akada JK, Wang Y, Toda T, Sakaida I, Okita K, Oka M, Nakamura K (2011) Up-regulation of 42 kDa tubulin alpha-6 chain fragment in well-differentiated hepatocellular carcinoma tissues from patients infected with hepatitis C virus. Anticancer Res 31:3331–3336PubMedGoogle Scholar
  25. 25.
    Lu C, Zhang J, He S, Wan C, Shan A, Wang Y, Yu L, Liu G, Chen K, Shi J, Zhang Y, Ni R (2013) Increased alpha-tubulin1b expression indicates poor prognosis and resistance to chemotherapy in hepatocellular carcinoma. Dig Dis Sci 58:2713–2720. doi: 10.1007/s10620-013-2692-z CrossRefPubMedGoogle Scholar
  26. 26.
    Fanale D, Bronte G, Passiglia F, Calo V, Castiglia M, Di Piazza F, Barraco N, Cangemi A, Catarella MT, Insalaco L, Listi A, Maragliano R, Massihnia D, Perez A, Toia F, Cicero G, Bazan V (2015) Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015:690–916. doi: 10.1155/2015/690916 CrossRefGoogle Scholar
  27. 27.
    Braeuning A, Gavrilov A, Brown S, Wolf CR, Henderson CJ, Schwarz M (2014) Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR. Toxicol Sci 140:259–270. doi: 10.1093/toxsci/kfu099 CrossRefPubMedGoogle Scholar
  28. 28.
    LeBaron MJ, Rasoulpour RJ, Gollapudi BB, Sura R, Kan HL, Schisler MR, Pottenger LH, Papineni S, Eisenbrandt DL (2014) Characterization of nuclear receptor-mediated murine hepatocarcinogenesis of the herbicide pronamide and its human relevance. Toxicol Sci 142:74–92. doi: 10.1093/toxsci/kfu155 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416. doi: 10.1038/nm1377 CrossRefPubMedGoogle Scholar
  30. 30.
    Lee YJ, Hah YJ, Kang YN, Kang KJ, Hwang JS, Chung WJ, Cho KB, Park KS, Kim ES, Seo HY, Kim MK, Park KG, Jang BK (2013) The autophagy-related marker LC3 can predict prognosis in human hepatocellular carcinoma. PLoS ONE 8:e81540. doi: 10.1371/journal.pone.0081540 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pons F, Varela M, Llovet JM (2005) Staging systems in hepatocellular carcinoma. HPB 7:35–41. doi: 10.1080/13651820410024058 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thompson AI, Conroy KP, Henderson NC (2015) Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol 15:63. doi: 10.1186/s12876-015-0291-5 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Greene MW, Burrington CM, Ruhoff MS, Johnson AK, Chongkrairatanakul T, Kangwanpornsiri A (2010) PKC{delta} is activated in a dietary model of steatohepatitis and regulates endoplasmic reticulum stress and cell death. J Biol Chem 285:42115–42129. doi: 10.1074/jbc.M110.168575 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schaefer KL, Takahashi H, Morales VM, Harris G, Barton S, Osawa E, Nakajima A, Saubermann LJ (2007) PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells. Int J Cancer 120:702–713. doi: 10.1002/ijc.22361 CrossRefPubMedGoogle Scholar
  35. 35.
    Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, Hartmann A, Bosserhoff AK, Hellerbrand C (2015) Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut 64:973–981. doi: 10.1136/gutjnl-2014-306968 CrossRefPubMedGoogle Scholar
  36. 36.
    Sanchez-Gurmaches J, Guertin DA (2014) Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta 1842:340–351. doi: 10.1016/j.bbadis.2013.05.027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lisa Rein-Fischboeck
    • 1
  • Rebekka Pohl
    • 1
  • Elisabeth M. Haberl
    • 1
  • Sebastian Zimny
    • 1
  • Maximilian Neumann
    • 1
  • Kristina Eisinger
    • 1
  • Thomas S. Weiss
    • 2
  • Sabrina Krautbauer
    • 1
  • Christa Buechler
    • 1
  1. 1.Department of Internal Medicine IRegensburg University HospitalRegensburgGermany
  2. 2.University Children Hospital (KUNO)Regensburg University HospitalRegensburgGermany

Personalised recommendations