Molecular and Cellular Biochemistry

, Volume 428, Issue 1–2, pp 79–86 | Cite as

The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells

Article

Abstract

Dental follicle stem cells (DFCs) are precursor cells of alveolar osteoblasts, and previous studies have shown that the growth factor bone morphogenetic protein (BMP)2 induces the osteogenic differentiation of DFCs. However, the molecular mechanism down-stream of the induction of the osteogenic differentiation by BMP2 remains elusive. We investigated therefore the phosphoproteome of DFCs after the induction of the osteogenic differentiation with BMP2. In this study, phosphoproteins of the hedgehog “off” state were differentially expressed. Further analyses revealed that BMP2 induced the expression of repressors of the hedgehog-signaling pathway such as Patched 1 (PTCH1), Suppressor of Fused (SUFU), and Parathyroid Hormone-Related Peptide (PTHrP). Previous studies suggested that hedgehog proteins induce the osteogenic differentiation of mesenchymal stem cells via a paracrine pathway. Indian hedgehog (IHH) induced the expression of the osteogenic transcription factor RUNX2. However, a supplementation of the BMP2-based osteogenic differentiation medium with IHH did not induce the expression of RUNX2. Moreover, IHH inhibited slightly the ALP activity and the mineralization of osteogenic-differentiated DFCs. In conclusion, our results suggest that BMP2 inhibits the hedgehog signaling after the induction of the osteogenic differentiation in DFCs.

Keywords

Hedgehog-signaling pathway Dental follicle cells Osteogenic differentiation Periodontium Bone morphogenetic protein 

Supplementary material

11010_2016_2918_MOESM1_ESM.pdf (713 kb)
Supplementary material 1 (PDF 712 KB)

References

  1. 1.
    Diekwisch TG (2001) The developmental biology of cementum. Int J Dev Biol 45:695–706PubMedGoogle Scholar
  2. 2.
    Handa K, Saito M, Yamauchi M et al (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31:606–611CrossRefPubMedGoogle Scholar
  3. 3.
    Morsczeck C (2015) Molecular mechanisms in dental follicle precursor cells during the osteogenic differentiation. Histol Histopathol 30:1161–1169. doi: 10.14670/HH-11-634 PubMedGoogle Scholar
  4. 4.
    Morsczeck C, Gotz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165CrossRefPubMedGoogle Scholar
  5. 5.
    Viale-Bouroncle S, Klingelhöffer C, Ettl T et al (2014) A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs). Cell Signal. doi: 10.1016/j.cellsig.2014.12.008 PubMedGoogle Scholar
  6. 6.
    Viale-Bouroncle S, Felthaus O, Schmalz G et al (2012) The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 21:1936–1947. doi: 10.1089/scd.2011.0422 CrossRefPubMedGoogle Scholar
  7. 7.
    Khan M, Seppala M, Zoupa M, Cobourne MT (2007) Hedgehog pathway gene expression during early development of the molar tooth root in the mouse. Gene Expr Patterns GEP 7:239–243. doi: 10.1016/j.modgep.2006.10.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Nakatomi M, Morita I, Eto K, Ota MS (2006) Sonic hedgehog signaling is important in tooth root development. J Dent Res 85:427–431CrossRefPubMedGoogle Scholar
  9. 9.
    Thesleff I (2014) Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Aust Dent J 59(Suppl 1):48–54. doi: 10.1111/adj.12102 CrossRefPubMedGoogle Scholar
  10. 10.
    Tummers M, Thesleff I (2009) The importance of signal pathway modulation in all aspects of tooth development. J Exp Zoolog B Mol Dev Evol 312B:309–319CrossRefGoogle Scholar
  11. 11.
    Koussoulakou DS, Margaritis LH, Koussoulakos SL (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5:226–243CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ehlen HWA, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res Part C Embryo Today Rev 78:267–279. doi: 10.1002/bdrc.20076 CrossRefGoogle Scholar
  13. 13.
    Vortkamp A (2000) The Indian hedgehog–PTHrP system in bone development. Ernst Scher Res Found Workshop 191–209Google Scholar
  14. 14.
    Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ (2007) Regulation of skeletogenic differentiation in cranial dermal bone. Dev Camb Engl 134:3133–3144. doi: 10.1242/dev.002709 Google Scholar
  15. 15.
    Lenton K, James AW, Manu A et al (2011) Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis 49:784–796. doi: 10.1002/dvg.20768 CrossRefPubMedGoogle Scholar
  16. 16.
    Engholm-Keller K, Larsen MR (2013) Technologies and challenges in large-scale phosphoproteomics. Proteomics 13:910–931. doi: 10.1002/pmic.201200484 CrossRefPubMedGoogle Scholar
  17. 17.
    Melo-Braga MN, Meyer M, Zeng X, Larsen MR (2015) Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics–current state-of-the-art and challenges. Proteomics 15:656–674. doi: 10.1002/pmic.201400388 CrossRefPubMedGoogle Scholar
  18. 18.
    Beck HC, Gosau M, Kristensen LP, Morsczeck C (2014) A site-specific phosphorylation of the focal adhesion kinase controls the formation of spheroid cell clusters. Neurochem Res 39:1199–1205. doi: 10.1007/s11064-014-1298-y CrossRefPubMedGoogle Scholar
  19. 19.
    Haw R, Hermjakob H, D’Eustachio P, Stein L (2011) Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics 11:3598–3613. doi: 10.1002/pmic.201100066 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397:617–621. doi: 10.1038/17611 CrossRefPubMedGoogle Scholar
  21. 21.
    Honda MJ, Imaizumi M, Suzuki H et al (2011) Stem cells isolated from human dental follicles have osteogenic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:700–708. doi: 10.1016/j.tripleo.2010.08.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52:541–552CrossRefPubMedGoogle Scholar
  23. 23.
    Morsczeck C, Moehl C, Gotz W et al (2005) In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell BiolInt 29:567–575Google Scholar
  24. 24.
    Viale-Bouroncle S, Gosau M, Morsczeck C (2014) NOTCH1 signaling regulates the BMP2/DLX-3 directed osteogenic differentiation of dental follicle cells. Biochem Biophys Res Commun 443:500–504. doi: 10.1016/j.bbrc.2013.11.120 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao H, Feng J, Seidel K et al (2014) Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–173. doi: 10.1016/j.stem.2013.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Viale-Bouroncle S, Gosau M, Morsczeck C (2014) Collagen I induces the expression of alkaline phosphatase and osteopontin via independent activations of FAK and ERK signalling pathways. Arch Oral Biol 59:1249–1255. doi: 10.1016/j.archoralbio.2014.07.013 CrossRefPubMedGoogle Scholar
  27. 27.
    Plaisant M, Fontaine C, Cousin W et al (2009) Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells Dayt Ohio 27:703–713. doi: 10.1634/stemcells.2008-0888 CrossRefGoogle Scholar
  28. 28.
    Klingelhöffer C, Reck A, Ettl T, Morsczeck C (2016) The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3. Tissue Cell 48:334–339. doi: 10.1016/j.tice.2016.05.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cranio- and Maxillofacial SurgeryHospital of the University of RegensburgRegensburgGermany
  2. 2.Department of Clinical Biochemistry and Pharmacology, Centre for Clinical ProteomicsOdense University HospitalOdenseDenmark

Personalised recommendations