Molecular and Cellular Biochemistry

, Volume 428, Issue 1–2, pp 67–77 | Cite as

Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway

  • Bernardo Assein Arús
  • Débora Guerini Souza
  • Bruna Bellaver
  • Diogo Onofre Souza
  • Carlos-Alberto Gonçalves
  • André Quincozes-Santos
  • Larissa Daniele Bobermin
Article

Abstract

Resveratrol is a dietary polyphenol that displays neuroprotective properties in several in vivo and in vitro experimental models, by modulating oxidative and inflammatory responses. Glutathione (GSH) is a key antioxidant in the central nervous system (CNS) that modulates several cellular processes, and its depletion is associated with oxidative stress and inflammation. Therefore, this study sought to investigate the protective effects of resveratrol against GSH depletion pharmacologically induced by buthionine sulfoximine (BSO) in C6 astroglial cells, as well as its underlying cellular mechanisms. BSO exposure resulted in several detrimental effects, decreasing glutamate-cysteine ligase (GCL) activity, cystine uptake, GSH intracellular content and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR). Moreover, BSO increased reactive oxygen/nitrogen species (ROS/RNS) levels and pro-inflammatory cytokine release. Resveratrol prevented these effects by protecting astroglial cells against BSO-induced cytotoxicity, by modulating oxidative and inflammatory responses. Additionally, we observed that pharmacological inhibition of heme oxygenase 1 (HO-1), an essential cellular defense against oxidative and inflammatory injuries, abolished all the protective effects of resveratrol. These observations suggest HO-1 pathway as a cellular effector in the mechanism by which resveratrol protects astroglial cells against GSH depletion, a condition that may be associated to neurodegenerative diseases.

Keywords

Astroglial cells Glutathione Buthionine sulfoximine Oxidative stress Inflammatory response Heme oxygenase 1 

Notes

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Financiadora de Estudos e Projetos (FINEP)-Instituto Brasileiro de Neurociências (IBN Net) 01.06.0842-00, and Universidade Federal do Rio Grande do Sul and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

References

  1. 1.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506. doi: 10.1038/nrd2060 CrossRefPubMedGoogle Scholar
  2. 2.
    Bhullar KS, Hubbard BP (2015) Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta 1852:1209–1218. doi: 10.1016/j.bbadis.2015.01.012 CrossRefPubMedGoogle Scholar
  3. 3.
    Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol Vitro Int J Publ Assoc BIBRA 28:479–484. doi: 10.1016/j.tiv.2014.01.006 CrossRefGoogle Scholar
  4. 4.
    Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377–395. doi: 10.1002/mnfr.200400098 CrossRefPubMedGoogle Scholar
  5. 5.
    Quincozes-Santos A, Gottfried C (2011) Resveratrol modulates astroglial functions: neuroprotective hypothesis: Resveratrol modulates astroglial functions. Ann N Y Acad Sci 1215:72–78. doi: 10.1111/j.1749-6632.2010.05857.x CrossRefPubMedGoogle Scholar
  6. 6.
    Sakata Y, Zhuang H, Kwansa H et al (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol 224:325–329. doi: 10.1016/j.expneurol.2010.03.032 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rege SD, Geetha T, Griffin GD, et al (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218. doi: 10.3389/fnagi.2014.00218 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ferretta A, Gaballo A, Tanzarella P et al (2014) Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 1842:902–915. doi: 10.1016/j.bbadis.2014.02.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Bastianetto S, Ménard C, Quirion R (2015) Neuroprotective action of resveratrol. Biochim Biophys Acta 1852:1195–1201. doi: 10.1016/j.bbadis.2014.09.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Bastianetto S, Quirion R (2010) Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp Neurol 225:237–239. doi: 10.1016/j.expneurol.2010.06.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Kulkarni SS, Cantó C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852:1114–1123. doi: 10.1016/j.bbadis.2014.10.005 CrossRefPubMedGoogle Scholar
  12. 12.
    Quincozes-Santos A, Bobermin LD, Latini A et al (2013) Resveratrol protects C6 Astrocyte cell line against hydrogen peroxide-induced oxidative stress through Heme oxygenase 1. PLoS One 8:e64372. doi: 10.1371/journal.pone.0064372 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Motterlini R, Foresti R (2014) Heme oxygenase-1 as a target for drug discovery. Antioxid Redox Signal 20:1810–1826. doi: 10.1089/ars.2013.5658 CrossRefPubMedGoogle Scholar
  14. 14.
    Scapagnini G, Butterfield DA, Colombrita C et al (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818. doi: 10.1089/ars.2004.6.811 CrossRefPubMedGoogle Scholar
  15. 15.
    Loboda A, Damulewicz M, Pyza E, et al (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci CMLS 73:3221–3247. doi: 10.1007/s00018-016-2223-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Wakabayashi N, Slocum SL, Skoko JJ et al (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663. doi: 10.1089/ars.2010.3216 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671CrossRefPubMedGoogle Scholar
  18. 18.
    Dringen R, Brandmann M, Hohnholt MC, Blumrich E-M (2015) Glutathione-dependent detoxification processes in Astrocytes. Neurochem Res 40:2570–2582. doi: 10.1007/s11064-014-1481-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743. doi: 10.1016/j.tins.2004.10.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555. doi: 10.1089/ars.2011.4391 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Seib TM, Patel SA, Bridges RJ (2011) Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures. Glia 59:1387–1401. doi: 10.1002/glia.21176 CrossRefPubMedGoogle Scholar
  23. 23.
    Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44. doi: 10.1016/j.freeradbiomed.2013.02.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Bobermin LD, Hansel G, Scherer EBS, et al (2015) Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol Vitro Int J Publ Assoc BIBRA 29:2022–2029. doi: 10.1016/j.tiv.2015.08.008 CrossRefGoogle Scholar
  25. 25.
    de Almeida LMV, Piñeiro CC, Leite MC et al (2007) Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol 27:661–668. doi: 10.1007/s10571-007-9152-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Bellaver B, Bobermin LD, Souza DG, et al (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta BBA 1862:1827–1838. doi: 10.1016/j.bbadis.2016.06.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PloS One 8:e60282. doi: 10.1371/journal.pone.0060282 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schreiner B, Romanelli E, Liberski P, et al (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12:1377–1384. doi: 10.1016/j.celrep.2015.07.051 CrossRefPubMedGoogle Scholar
  29. 29.
    Bakshi R, Zhang H, Logan R et al (2015) Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol Dis 82:574–579. doi: 10.1016/j.nbd.2015.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee M, Cho T, Jantaratnotai N, et al (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J Off Publ Fed Am Soc Exp Biol 24:2533–2545. doi: 10.1096/fj.09-149997 Google Scholar
  31. 31.
    Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150. doi: 10.1042/BST0351147 CrossRefPubMedGoogle Scholar
  32. 32.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x CrossRefPubMedGoogle Scholar
  33. 33.
    Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S et al (2010) Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7:16. doi: 10.1186/1742-2094-7-16 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shen H-M, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J Off Publ Fed Am Soc Exp Biol 20:1589–1598. doi: 10.1096/fj.05-5603rev Google Scholar
  35. 35.
    Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813. doi: 10.1155/2015/610813 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Radford RA, Morsch M, Rayner SL, et al (2015) The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci 9:414. doi: 10.3389/fncel.2015.00414 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McBean GJ, López MG, Wallner FK (2016) Redox-based therapeutics in neurodegenerative disease. Br J Pharmacol. doi: 10.1111/bph.13551 Google Scholar
  38. 38.
    Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869–881. doi: 10.1016/S1474-4422(16)00114-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Vargas F, Rodríguez-Gómez I, Pérez-Abud R et al (2012) Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine. Am J Hypertens 25:629–635. doi: 10.1038/ajh.2011.240 CrossRefPubMedGoogle Scholar
  40. 40.
    Ibi M, Sawada H, Kume T et al (1999) Depletion of intracellular glutathione increases susceptibility to nitric oxide in mesencephalic dopaminergic neurons. J Neurochem 73:1696–1703CrossRefPubMedGoogle Scholar
  41. 41.
    Gegg ME, Clark JB, Heales SJR (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res 1036:1–6. doi: 10.1016/j.brainres.2004.11.064 CrossRefPubMedGoogle Scholar
  42. 42.
    dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. doi: 10.1016/j.abb.2006.06.025 CrossRefPubMedGoogle Scholar
  43. 43.
    Quincozes-Santos A, Bobermin LD, Souza DG et al (2014) Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of Heme oxygenase 1. J Neurochem 130:61–74. doi: 10.1111/jnc.12694 CrossRefPubMedGoogle Scholar
  44. 44.
    Steiner J, Schroeter ML, Schiltz K et al (2010) Haloperidol and clozapine decrease S100B release from glial cells. Neuroscience 167:1025–1031. doi: 10.1016/j.neuroscience.2010.03.010 CrossRefPubMedGoogle Scholar
  45. 45.
    Bobermin LD, Arús BA, Leite MC et al (2016) Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity. Neurotox Res 29:314–324. doi: 10.1007/s12640-015-9581-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Bobermin LD, Quincozes-Santos A, Guerra MC, et al (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PloS One 7:e52164. doi: 10.1371/journal.pone.0052164 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Seelig GF, Meister A (1985) Glutathione biosynthesis; gamma-glutamylcysteine synthetase from rat kidney. Methods Enzymol 113:379–390CrossRefPubMedGoogle Scholar
  48. 48.
    Wegrzynowicz M, Hilgier W, Dybel A et al (2007) Upregulation of cerebral cortical glutathione synthesis by ammonia in vivo and in cultured glial cells: the role of cystine uptake. Neurochem Int 50:883–889. doi: 10.1016/j.neuint.2006.12.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol Clifton NJ 108:347–352. doi: 10.1385/0-89603-472-0:347 Google Scholar
  50. 50.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  51. 51.
    Iglesias J, Morales L, Barreto GE (2016) Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol. doi: 10.1007/s12035-016-9833-2 PubMedGoogle Scholar
  52. 52.
    Parpura V, Heneka MT, Montana V, et al (2012) Glial cells in (patho)physiology: glial cells in (patho) physiology. J Neurochem 121:4–27. doi: 10.1111/j.1471-4159.2012.07664.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Verkhratsky A, Rodríguez JJ, Parpura V (2014) Neuroglia in ageing and disease. Cell Tissue Res 357:493–503. doi: 10.1007/s00441-014-1814-z CrossRefPubMedGoogle Scholar
  54. 54.
    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi: 10.1016/j.cmet.2011.08.016 CrossRefPubMedGoogle Scholar
  55. 55.
    Quincozes-Santos A, Bobermin LD, de Assis AM et al (2016) Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta. doi: 10.1016/j.bbadis.2016.09.013 Google Scholar
  56. 56.
    Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1–14CrossRefPubMedGoogle Scholar
  57. 57.
    Vargas MR, Johnson DA, Sirkis DW et al (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci Off J Soc Neurosci 28:13574–13581. doi: 10.1523/JNEUROSCI.4099-08.2008 CrossRefGoogle Scholar
  58. 58.
    Calkins MJ, Johnson DA, Townsend JA et al (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 11:497–508. doi: 10.1089/ars.2008.2242 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Aoyama K, Nakaki T (2015) Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Mol Basel Switz 20:8742–8758. doi: 10.3390/molecules20058742 Google Scholar
  60. 60.
    Escartin C, Won SJ, Malgorn C et al (2011) Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression. J Neurosci Off J Soc Neurosci 31:7392–7401. doi: 10.1523/JNEUROSCI.6577-10.2011 CrossRefGoogle Scholar
  61. 61.
    Biswas C, Shah N, Muthu M et al (2014) Nuclear Heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289:26882–26894. doi: 10.1074/jbc.M114.567685 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chi P-L, Lin C-C, Chen Y-W et al (2014) CO induces Nrf2-dependent Heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol 52:277–292. doi: 10.1007/s12035-014-8869-4 CrossRefPubMedGoogle Scholar
  63. 63.
    Backos DS, Franklin CC, Reigan P (2012) The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 83:1005–1012. doi: 10.1016/j.bcp.2011.11.016 CrossRefPubMedGoogle Scholar
  64. 64.
    Park H-A, Khanna S, Rink C et al (2009) Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway. Cell Death Differ 16:1167–1179. doi: 10.1038/cdd.2009.37 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Huang T-C, Lu K-T, Wo Y-YP, et al (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PloS One 6:e29102. doi: 10.1371/journal.pone.0029102 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F (2015) Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 9:322. doi: 10.3389/fncel.2015.00322 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Xia N, Strand S, Schlufter F et al (2013) Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide. Biol Chem 32:29–35. doi: 10.1016/j.niox.2013.04.001 Google Scholar
  68. 68.
    Sarady JK, Zuckerbraun BS, Bilban M, et al (2004) Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. FASEB J Off Publ Fed Am Soc Exp Biol 18:854–856. doi: 10.1096/fj.03-0643fje Google Scholar
  69. 69.
    Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. doi: 10.1155/2014/861231 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rossi D (2015) Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 130:86–120. doi: 10.1016/j.pneurobio.2015.04.003 CrossRefPubMedGoogle Scholar
  71. 71.
    Kaur U, Banerjee P, Bir A et al (2015) Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-κB connection. Curr Top Med Chem 15:446–457CrossRefPubMedGoogle Scholar
  72. 72.
    Nakajima S, Kitamura M (2013) Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 65:162–174. doi: 10.1016/j.freeradbiomed.2013.06.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bernardo Assein Arús
    • 1
  • Débora Guerini Souza
    • 1
  • Bruna Bellaver
    • 1
  • Diogo Onofre Souza
    • 1
  • Carlos-Alberto Gonçalves
    • 1
  • André Quincozes-Santos
    • 1
  • Larissa Daniele Bobermin
    • 1
  1. 1.Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations