Skip to main content
Log in

Apigenin alleviates STZ-induced diabetic cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153

    Article  CAS  PubMed  Google Scholar 

  2. Aroor AR, Mandavia CH, Sowers JR (2012) Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clinics 8:609–617

    Article  Google Scholar 

  3. Wong AK, AlZadjali MA, Choy AM, Lang CC (2008) Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther 26:203–213

    Article  CAS  PubMed  Google Scholar 

  4. Lefort EC, Blay J (2013) Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 57:126–144

    Article  CAS  PubMed  Google Scholar 

  5. Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30:233–245

    CAS  PubMed  Google Scholar 

  7. Liu-Smith F, Meyskens F (2016) Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res 60:1264–1274

    Article  CAS  PubMed  Google Scholar 

  8. Huang CS, Lii CK, Lin AH, Yeh YW, Yao HT, Li CC, Wang TS, Chen HW (2013) Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch Toxico 87:167–178

    Article  CAS  Google Scholar 

  9. Ohno M, Shibata C, Kishikawa T, Yoshikawa T, Takata A, Kojima K, Akanuma M, Kang YJ, Yoshida H, Otsuka M, Koike K (2013) The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Sci Rep 3:2553

    Article  PubMed  PubMed Central  Google Scholar 

  10. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, O’Neil L, White TA, Sinclair DA, Chini EN (2013) Flavonoid apigenin is an inhibitor of the NAD + ase CD38: implications for cellular NAD + metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horvath B, Mukhopadhyay B, Becker L, Haskó G, Liaudet L, Wink DA, Veves A, Mechoulam R, Pacher PC (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai D, Zhang Y, Shen M, Sun Y, Xia Q, Zhang Y, Liu X, Wang H, Yuan L (2016) Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci Rep 6:22068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Testai L, Martelli A, Cristofaro M, Breschi MC, Calderone V (2013) Cardioprotective effects of different flavonoids against myocardial ischaemia/ reperfusion injury in Langendorff-perfused rat hearts. J Pharm Pharmacol 65: 750–756

    Article  CAS  PubMed  Google Scholar 

  14. Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C, Chen Q, Tan Y, Cui T, Zheng Y, Cai L (2013) Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol 57:82–95

    Article  CAS  PubMed  Google Scholar 

  15. Liao HH, Zhang N, Feng H, Zhang N, Ma ZG, Yang Z, Yuan Y, Bian ZY, Tang QZ (2015) Oleanolic acid alleviated pressure overload-induced cardiac remodeling. Mol Cell Biochem 409:145–154

    Article  CAS  PubMed  Google Scholar 

  16. LaRocca TJ, Fabris F, Chen J, Benhayon D, Zhang S, McCollum L, Schecter AD, Cheung JY, Sobie EA, Hajjar RJ, Lebeche D (2012) Na+/Ca2 + exchanger-1 protects against systolic failure in the Akitains2 model of diabetic cardiomyopathy via a CXCR4/NF-kappaB pathway. Am J Physiol Heart Circ Physiol 303:H353–H367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  18. Sung MM, Hamza SM, Dyck JRB (2015) Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxidants Redox Signal 22:1606–1630

    Article  CAS  Google Scholar 

  19. Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S (2015) Apigenin blocks IKKalpha activation and suppresses prostate cancer progression. Oncotarget 6:31216–31232

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beckman JA, Creager MA (2016) Vascular complications of Diabetes. Circ Res 118:1771–1785

    Article  CAS  PubMed  Google Scholar 

  21. Saunders J, Mathewkutty S, Drazner MH, McGuire DK (2008) Cardiomyopathy in type 2 diabetes: update on pathophysiological mechanisms. Herz 33:184–190

    Article  PubMed  Google Scholar 

  22. Standl E, Schnell O, McGuire DK (2016) Heart failure considerations of antihyperglycemic medications for type 2 diabetes. Circ Res 118:1830–1843

    Article  CAS  PubMed  Google Scholar 

  23. Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–1727

    Article  PubMed  Google Scholar 

  24. Arango D, Diosa-Toro M, Rojas-Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, Jiang J, Schmittgen TD Doseff AI (2015) Dietary apigenin reduces LPS-induced expression of miR-155 restoring immune balance during inflammation. Mol Nutr Food Res 59:763–772

    Article  CAS  PubMed  Google Scholar 

  25. Cao HH, Chu JH, Kwan HY, Su T, Yu H, Cheng CY, Fu XQ, Guo H, Li T, Tse AK, Chou GX, Mo HB, Yu ZL 2016 Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci Rep 6:21731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, Grotewold E, Doseff AI (2013) Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci USA 110:E2153–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark JL, Zahradka P, Taylor CG (2015) Efficacy of flavonoids in the management of high blood pressure. Nutr Rev 73:799–822

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81270303, 81470516,81470402), Hubei Province’s Outstanding Medical Academic Leader program, and the Fundamental Research Funds for the Central Universities of China (No. 2015301020202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Zhu Tang.

Additional information

Huang-Jun Liu and Yun-Lin Fan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HJ., Fan, YL., Liao, HH. et al. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem 428, 9–21 (2017). https://doi.org/10.1007/s11010-016-2913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2913-9

Keywords

Navigation