Advertisement

Molecular and Cellular Biochemistry

, Volume 424, Issue 1–2, pp 69–78 | Cite as

Methionine and methionine sulfoxide treatment induces M1/classical macrophage polarization and modulates oxidative stress and purinergic signaling parameters

  • Lien M. dos Santos
  • Tatiane M. da Silva
  • Juliana H. Azambuja
  • Priscila T. Ramos
  • Pathise S. Oliveira
  • Elita F. da Silveira
  • Nathalia S. Pedra
  • Kennia Galdino
  • Carlus A. T. do Couto
  • Mayara S. P. Soares
  • Rejane G. Tavares
  • Roselia M. Spanevello
  • Francieli M. Stefanello
  • Elizandra Braganhol
Article

Abstract

Methionine is an essential amino acid involved in critical metabolic process, and regulation of methionine flux through metabolism is important to supply this amino acid for cell needs. Elevation in plasma methionine commonly occurs due to mutations in methionine-metabolizing enzymes, such as methionine adenosyltransferase. Hypermethioninemic patients exhibit clinical manifestations, including neuronal and liver disorders involving inflammation and tissue injury, which pathophysiology is not completely established. Here, we hypothesize that alterations in macrophage inflammatory response may contribute to deleterious effects of hypermethioninemia. To this end, macrophage primary cultures were exposed to methionine (1 mM) and/or its metabolite methionine sulfoxide (0.5 mM), and M1/proinflammatory or M2/anti-inflammatory macrophage polarization was evaluated. In addition, inflammation-related pathways including oxidative stress parameters, as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities; reactive oxygen species (ROS) production, and purinergic signaling, as ATP/ADP/AMPase activities, were investigated. Methionine and/or methionine sulfoxide induced M1/classical macrophage activation, which is related to proinflammatory responses characterized by increased iNOS activity and TNF-α release. Further experiments showed that treatments promoted alterations on redox state of macrophages by differentially modulated SOD and CAT activities and ROS levels. Finally, methionine and/or methionine sulfoxide treatment also altered the extracellular nucleotide metabolism, promoting an increase of ATPase/ADPase activities in macrophages. In conclusion, these findings contribute to better understand the participation of proinflammatory responses in cell injury observed in hypermethioninemic patients.

Keywords

Methionine Methionine sulfoxide Macrophage polarization Oxidative stress Ectonucleotidases 

Notes

Acknowledgments

This study was supported by the Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Universal Processo No. 454262/2014-0; No. 482055/2013-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS). T.M. da Silva, J.H. Azambuja, P.T. Ramos, N.S. Pedra, P.S. Oliveira, E.F. da Silveira,K. Galdino, C.A.T. do Couto were recipients of CNPq or CAPES fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Finkelstein JD (2006) Inborn errors of sulfur-containing amino acid metabolism. J Nutr 136:1750S–1753SPubMedGoogle Scholar
  2. 2.
    Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2007–2056Google Scholar
  3. 3.
    Avila MA, Berasain C, Torres L, Martín-Duce A, Corrales FJ, Yang H, Prieto J, Lu SC, Caballería J, Rodés J, Mato JM (2000) Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33:907–914CrossRefPubMedGoogle Scholar
  4. 4.
    Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5565CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fernández-Irigoyen J, Santamaría E, Chien YH, Hwu WL, Korman SH, Faghfoury H, Schulzr A, Hoganson GE, Stable SP, Allen RH, Wagner C, Mudd SH, Corrales FJ (2010) Enzymatic activity of methionine adenosyltransferase variants identified in patients with persistent hypermethioninemia. Mol Genet Metab 101:172–177CrossRefPubMedGoogle Scholar
  6. 6.
    Laskin DL, Laskin JD (2001) Role of macrophages and inflammatory mediators in chemically induced toxicity. Toxicology 160:111–118CrossRefPubMedGoogle Scholar
  7. 7.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:6–13CrossRefGoogle Scholar
  8. 8.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–25CrossRefPubMedGoogle Scholar
  9. 9.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophages activation. Nat Rev Immunol 8:958–969CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mantovani A (2009) Orchestration of macrophage polarization. Blood 114:3135–3136CrossRefPubMedGoogle Scholar
  11. 11.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefPubMedGoogle Scholar
  12. 12.
    Liu YC, Zou XB, Chai YF, Yao YM (2014) Macrophage polarization in inflammatory diseases. Int J Biol Sci 10:520–529CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ley S, Weigert A, Brune B (2010) Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 215:674–684CrossRefPubMedGoogle Scholar
  14. 14.
    Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morrelli A, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600CrossRefPubMedGoogle Scholar
  15. 15.
    Bours MJ, EL Swennen, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404CrossRefPubMedGoogle Scholar
  16. 16.
    Desai BN, Leitinger N (2014) Purinergic and calcium signaling in macrophage function and plasticity. Front Immunol 5:580CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    La Sala A, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2003) Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 73:339–343CrossRefPubMedGoogle Scholar
  18. 18.
    Lemaire I, Leduc N (2003) Purinergic P2X7 receptor function in lung alveolar macrophages: pharmacologic characterization and bidirectional regulation by Th1 and Th2 cytokines. Drug Dev Res 59:118–127CrossRefGoogle Scholar
  19. 19.
    Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39CrossRefPubMedGoogle Scholar
  21. 21.
    Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio (2013) Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med 91(2):165–172CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555CrossRefPubMedGoogle Scholar
  24. 24.
    Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination ofarginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235CrossRefPubMedGoogle Scholar
  25. 25.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  26. 26.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  27. 27.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefPubMedGoogle Scholar
  28. 28.
    Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380CrossRefPubMedGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  30. 30.
    Jay SM, Skokos E, Laiwalla F, Krady MM, Kyriakides TR (2007) Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am J Pathol 171:632–640CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Waldo SW, Li Y, Buono C, Zhao B, Billings EM, Chang J, Kruth HS (2008) Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 172(4):1112–1126CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA 110:17253–17258CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stefanello FM, Matté S, Scherer EB, Wannmacher CMD, Wajner M, Wyse ATS (2007) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4CrossRefPubMedGoogle Scholar
  34. 34.
    Stefanello FM, Matté C, Pederzolli CD, Kolling J, Mescka CP, Lamers ML, De Assis AM, Perry ML, Dos Santos MF, Dutra-Filho CS, Wyse AT (2009) Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie 91:961–968CrossRefPubMedGoogle Scholar
  35. 35.
    Augoustides-Savvopoulou P, Luka Z, Karyda S, Stabler SP, Allen RH, Patsiaoura K, Wagner C, Mudd SH (2003) Glycine N-methyltransferase deficiency: a new patient with a novel mutation. J Inherit Metab Dis 26:745–759CrossRefPubMedGoogle Scholar
  36. 36.
    Ozias MK, Schalinske KL (2003) All-trans-retinoic acid rapidly induces glycine N-methyltransferase in a dose-dependent manner and reduces circulating methionine and homocysteine levels in rats. J Nutr 133:4090–4094PubMedGoogle Scholar
  37. 37.
    Forman HJ, Torres M (2001) Redox signaling in macrophages. Mol Asp Med 22:189–216CrossRefGoogle Scholar
  38. 38.
    Oliveira CC, Oliveira SM, Godoy LMF, Gabardo J, Buchi DF, Canova (2006) A Brazilian medical formulation, alters oxidative metabolism of mice macrophages. J Infect 52:420–432CrossRefPubMedGoogle Scholar
  39. 39.
    Tyteca D, Nishino T, Debaix H, Van Der Smissen P, N’Kuli F, Hoffmann D, Cnops Y, Rabolli V, Loo GV, Beyaert R, Huaux F, Devuyst O, Courtoy PJ (2015) Regulation of macrophage motility by the water channel aquaporin-1: crucial role of M0/M2 phenotype switch. PloS One 10:2CrossRefGoogle Scholar
  40. 40.
    Bohlson SS, O’Conner SD, Hulsebus HJ, Ho M-M, Fraser DA (2014) Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front Immunol 5:402CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira JC, Morrone FB, Sévigny J, Schetinger MR, de Souza Wyse AT, Battastini AM (2012) Differential macrophage activation alters the expression profile of NTPDase and ecto-5′-nucleotidase. PLoS One 7:e31205CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lévesque SA, Kukulski F, Enjyoji K, Robson SC, Sévigny J (2010) NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur J Immunol 40:1473–1485CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yamada H, Akahoshia N, Kamatad S, Hagiyad Y, Hishikia T, Nagahatac Y, Matsuurac T, Takanoc N, Morib M, Ishizakib Y, Izumib T, Kumagaie Y, Kasaharad T, Suematsua M, Ishii I (2012) Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria. Free Radic Biol Med 52:1716–1726CrossRefPubMedGoogle Scholar
  44. 44.
    Hirabayashi K, Shiohara M, Yamada K, Sueki A, Ide Y, Takeuchi K, Hagimoto R, Kinoshita T, Yabuhara A, Mudd SH, Koike K (2013) Neurologically normal development of a patient with severe methionine adenosyltransferase I/III deficiency after continuing dietary methionine restriction. Gene 530:104–108CrossRefPubMedGoogle Scholar
  45. 45.
    Machado M, Azeredo R, Díaz-Rosales P, Afonso A, Peres H, Oliva-Teles A, Costas B (2015) Dietary tryptophan and methionine as modulators of European seabass (Dicentrarchus labrax) immune status and inflammatory response. Fish Shellfish Immunol 42:353–362CrossRefPubMedGoogle Scholar
  46. 46.
    Costa MZ, Da Silva TM, Flores NP, Schmitz F, Da Silva Scherer EB, Viau CM, Saffi J, Barschak AG, De Souza Wyse AT, Spanevello RM, Stefanello FM (2013) Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol Cell Biochem 384:21–28CrossRefPubMedGoogle Scholar
  47. 47.
    Chamberlin ME, Ubagai T, Mudd SH, Wilson WL, Leonard JV, Chou JY (1996) Demyelination of the brain is association with methionine adenosyltransferase I/III deficiency. J Clin Investig 98:1021–1027CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Furujo M, Kinoshita M, Nagao M, Kubo T (2012) Methionine adenosyltransferase I/III deficiency: neurological manifestations and relevance of S-adenosylmethionine. Mol Genet Metab 107:253–256CrossRefPubMedGoogle Scholar
  49. 49.
    Wang X, Hai C (2016) Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 43(7):607–628CrossRefPubMedGoogle Scholar
  50. 50.
    Keller JY, Kindy MS, Holtsberg FW, St. Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697PubMedGoogle Scholar
  51. 51.
    Chovolou Y, Watjem W, Kampkotter A, Kahl R (2003) Resistance to tumor necrosis factor-α (TNF-α)-induced apoptosis in rat hepatoma cells expressing TNF-α is linked to low antioxidant enzyme expression. J Biol Chem 278:29626–29632CrossRefPubMedGoogle Scholar
  52. 52.
    Pelletier M, Lepow TS, Billingham LK, Murphy MP, Siegel RM (2013) New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin Immunol 24:384–392CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ghorbani Z, Hajizadeh M, Hekmatdoost A (2016) Dietary supplementation in patients with alcoholic liver disease: a review on current evidence. Hepatobiliary Pancreat Dis Int 13:1–3Google Scholar
  54. 54.
    Stiuso P, Bagarolo ML, Ilisso CP, Vanacore D, Martino E, Caraglia M, Porcelli M, Cacciapuoti G (2016) Protective effect of tyrosol and S-adenosylmethionine against ethanol-induced oxidative stress of Hepg2 cells involves sirtuin 1, P53 and Erk1/2 signaling. Int J Mol Sci 17:622CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yoon SY, Hong GH, Kwon HS, Park S, Park SY, Shin B, Kim TB, Moon HB, Cho YS (2016) S-Adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress. Exp Mol Med 48:236CrossRefGoogle Scholar
  56. 56.
    Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132CrossRefPubMedGoogle Scholar
  57. 57.
    Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:59778CrossRefGoogle Scholar
  58. 58.
    Vuaden FC, Savio LE, Rico EP, Mussulini BH, Rosemberg DB, de Oliveira DL, Bogo MR, Bonan CD, Wyse AT (2016) Methionine exposure alters glutamate uptake and adenine nucleotide hydrolysis in the Zebrafish brain. Mol Neurobiol 53(1):200–209CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lien M. dos Santos
    • 1
  • Tatiane M. da Silva
    • 2
  • Juliana H. Azambuja
    • 1
    • 4
  • Priscila T. Ramos
    • 1
  • Pathise S. Oliveira
    • 2
  • Elita F. da Silveira
    • 3
  • Nathalia S. Pedra
    • 1
  • Kennia Galdino
    • 1
  • Carlus A. T. do Couto
    • 1
  • Mayara S. P. Soares
    • 1
  • Rejane G. Tavares
    • 2
  • Roselia M. Spanevello
    • 1
  • Francieli M. Stefanello
    • 2
  • Elizandra Braganhol
    • 4
  1. 1.Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de AlimentosUniversidade Federal de Pelotas (UFPel)PelotasBrazil
  2. 2.Laboratório de Biomarcadores, Centro de Ciências Químicas Farmacêuticas e de AlimentosUniversidade Federal de Pelotas (UFPel)PelotasBrazil
  3. 3.Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Rio Grande (FURG)Rio GrandeBrazil
  4. 4.Departamento de Ciências Básicas da SaúdeUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreBrazil

Personalised recommendations