Molecular and Cellular Biochemistry

, Volume 420, Issue 1–2, pp 121–128 | Cite as

Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies

  • Xiaoli Wu
  • Xuefeng Feng
  • Xiaoqing Zhao
  • Futian Ma
  • Na Liu
  • Hongming Guo
  • Chaonan Li
  • Huan Du
  • Baoxi Zhang


The purpose of the study was to assess the effect of the internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) on the outcome in pediatric acute myeloid leukemia (AML) patients. We identified eligible studies from several databases including PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) (from January 1995 to July 2015). Ten studies of 1661 pediatric patients with AML were included in exploring the relationship between the FLT3-ITD and overall survival (OS)/event free survival (EFS). Pediatric patients with AML with FLT3-ITD had worse OS [HR = 2.19 (1.60–3.01)]/EFS [HR = 1.70 (1.37–2.11)] than those patients without FLT3-ITD. Furthermore, FLT3-ITD had unfavorable effect on OS/EFS in the subgroups of NOS, uni/multivariate model, number of patients, the length of following-up, and patient source. The findings of this meta-analysis indicated that FLT3-ITD had negative impact on pediatric patients with AML.


Acute myeloid leukemia FLT3-ITD Pediatric Meta-analysis 



This study is funded by project supported by Science and Technology Department of Hebei Province (No. 152777206).

Compliance with ethical standards

Conflicts of interest

All the authors declare that they have no conflict of interest.

Supplementary material

11010_2016_2775_MOESM1_ESM.docx (279 kb)
Supplementary material 1 (DOCX 278 kb). Contour enhanced funnel about the association between FLT3-ITD and OS with filled studies from meta-trim in a random effects model


  1. 1.
    Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474CrossRefPubMedGoogle Scholar
  2. 2.
    Network CGAR (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059CrossRefGoogle Scholar
  3. 3.
    Tse K, Mukherjee G, Small D (2000) Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14:1766–1776CrossRefPubMedGoogle Scholar
  4. 4.
    Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Döhner H, Döhner K (2002) Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 100:4372–4380CrossRefPubMedGoogle Scholar
  5. 5.
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Löffler H, Sauerland CM, Serve H, Büchner T (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66CrossRefPubMedGoogle Scholar
  6. 6.
    Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335CrossRefPubMedGoogle Scholar
  7. 7.
    Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP (2001) Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 97:89–94CrossRefPubMedGoogle Scholar
  8. 8.
    Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G, Alonzo TA, Chang M, Arceci RJ, Small D (2007) The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110:979–985CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kinoshita A, Miyachi H, Matsushita H, Yabe M, Taki T, Watanabe T, Saito AM, Tomizawa D, Taga T, Takahashi H (2014) Acute myeloid leukaemia with myelodysplastic features in children: a report of Japanese Paediatric Leukaemia/Lymphoma Study Group. Br J Haematol 167:80–86CrossRefPubMedGoogle Scholar
  10. 10.
    Balgobind BV, Hollink IH, Arentsen-Peters ST, Zimmermann M, Harbott J, Beverloo HB, von Bergh AR, Cloos J, Kaspers GJ, de Haas V (2011) Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96:1478–1487CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leow S, Kham SKY, Ariffin H, Quah TC, Yeoh AEJ (2011) FLT3 mutation and expression did not adversely affect clinical outcome of childhood acute leukaemia—a study of 531 Southeast Asian children by the Ma-Spore study group. Hematol Oncol 29:211–219CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Y, Tang J, Wakamatsu P, Xue H, Chen J, Gaynon PS, Shen S, Sun W (2014) High-resolution melting curve analysis, a rapid and affordable method for mutation analysis in childhood acute myeloid leukemia. Front Pediatr 2:96CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Neame PB, Soamboonsrup P, Browman GP, Meyer RM, Benger A, Wilson W, Walker IR, Saeed N, McBride JA (1986) Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood 68:1355–1362PubMedGoogle Scholar
  14. 14.
    Sabattini E, Bacci F, Sagramoso C, Pileri S (2010) WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica 102:83–87PubMedGoogle Scholar
  15. 15.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux P, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Internal Med 151:W-65–W-94CrossRefGoogle Scholar
  16. 16.
    Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P (2000) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysesGoogle Scholar
  17. 17.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  19. 19.
    Deeks J, Higgins J, Altman D (2011) Chapter 9—analysing data and undertaking meta-analyses: Cochrane handbook for systematic reviews of interventions, Version 5.1.0 [updated March 2011]Google Scholar
  20. 20.
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2008) Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 61:991–996CrossRefPubMedGoogle Scholar
  21. 21.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRefPubMedGoogle Scholar
  22. 22.
    Ruan M, Wang Y, Zhang L, Liu T, Liu F, Liu X, Zhang J, Zou Y, Chen Y, Zhu X (2011) FLT3 mutations in children with acute myeloid leukemia: a single center study. Zhongguo dang dai er ke za zhi (Chin J Contemp Pediatr) 13:863–866Google Scholar
  23. 23.
    Sano H, Shimada A, Tabuchi K, Taki T, Murata C, M-j Park, Ohki K, Sotomatsu M, Adachi S, Tawa A (2013) WT1 mutation in pediatric patients with acute myeloid leukemia: a report from the Japanese Childhood AML Cooperative Study Group. Int J Hematol 98:437–445CrossRefPubMedGoogle Scholar
  24. 24.
    Staffas A, Kanduri M, Hovland R, Rosenquist R, Ommen HB, Abrahamsson J, Forestier E, Jahnukainen K, Jónsson ÓG, Zeller B (2011) Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood 118:5905–5913CrossRefPubMedGoogle Scholar
  25. 25.
    Yatsenko Y, Kalennik O, Maschan M, Kalinina I, Maschan A, Nasedkina T (2013) NPM1, FLT3, and c-KIT mutations in pediatric acute myeloid leukemia in Russian population. J Pediatr Hematol Oncol 35:e100–e108CrossRefPubMedGoogle Scholar
  26. 26.
    Tam WF, Gilliland DG (2008) Can FLT3 inhibitors overcome resistance in AML? Best Pract Res Clin Haematol 21:13–20CrossRefPubMedGoogle Scholar
  27. 27.
    Sudhindra A, Smith CC (2014) FLT3 inhibitors in AML: are we there yet? Curr Hematol Malig Rep 9:174–185CrossRefPubMedGoogle Scholar
  28. 28.
    Klusmann J-H, Reinhardt D, Zimmermann M, Kremens B, Vormoor J, Dworzak M, Creutzig U, Klingebiel T (2012) The role of matched sibling donor allogeneic stem cell transplantation in pediatric high-risk acute myeloid leukemia: results from the AML-BFM 98 study. Haematologica 97:21–29CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Creutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, Klingebiel T, Kremens B, Lehrnbecher T, von Neuhoff C (2013) Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood 122:37–43CrossRefPubMedGoogle Scholar
  30. 30.
    von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR, Zemanova Z, Stary J, Bourquin J-P, Haas OA (2010) Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 2009(25):6321Google Scholar
  31. 31.
    Hollink I, Zwaan C, Zimmermann M, Arentsen-Peters T, Pieters R, Cloos J, Kaspers G, de Graaf S, Harbott J, Creutzig U (2009) Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 23:262–270CrossRefPubMedGoogle Scholar
  32. 32.
    Mizushima Y, Taki T, Shimada A, Yui Y, Hiraumi Y, Matsubara H, Watanabe M, K-i Watanabe, Kamitsuji Y, Hayashi Y (2010) Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol 91:831–837CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaoli Wu
    • 1
  • Xuefeng Feng
    • 2
  • Xiaoqing Zhao
    • 1
  • Futian Ma
    • 1
  • Na Liu
    • 1
  • Hongming Guo
    • 1
  • Chaonan Li
    • 1
  • Huan Du
    • 1
  • Baoxi Zhang
    • 1
  1. 1.Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China
  2. 2.Department of HematologyThe Second Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations