Advertisement

Molecular and Cellular Biochemistry

, Volume 417, Issue 1–2, pp 169–179 | Cite as

Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress

  • Laura Toma
  • Gabriela M. Sanda
  • Mariana Deleanu
  • Camelia S. Stancu
  • Anca V. Sima
Article

Abstract

Type 2 Diabetes Mellitus is a worldwide epidemic, and its atherosclerotic complications produce morbidity and mortality in affected patients. It is known that the vascular cell adhesion molecule-1 (VCAM-1) levels are increased in the sera of diabetic patients. Our aim was to investigate the impact of the endoplasmic reticulum stress (ERS) in VCAM-1 expression and secretion in human endothelial cells (HEC) exposed to glycated low-density lipoproteins (gLDL). The results showed that 24 h incubation of HEC with gLDL induces (i) stimulation of VCAM-1 expression and secretion, determining increased monocyte adhesion to HEC; (ii) RAGE up-regulation and free cholesterol loading; (iii) ERS activation (increased eIF2α phosphorylation and CHOP mRNA levels, and decreased GRP78 protein expression); and (iv) oxidative stress [increased levels of reactive oxygen species (ROS) and glutamate cysteine ligase catalytic unit gene expression]. Treatment of gLDL-exposed HEC with ERS inhibitors, salubrinal (Sal) and sodium phenylbutyrate (PBA), decreased intracellular ROS. Incubation of gLDL-exposed cells with the anti-oxidant N-acetyl-cysteine (NAC) reduced ERS, revealed by decreased eIF2α phosphorylation and CHOP gene expression and increased GRP78 expression, thus validating the interconnection between ERS and oxidative stress. Sal, PBA, NAC and inhibitors of p38 MAP kinase and NF-kB induced the decrease of VCAM-1 expression and of the ensuing monocyte adhesion induced by gLDL. In conclusion, in HEC, gLDL stimulate the expression of cellular VCAM-1, the secretion of soluble VCAM-1, and the adhesion of monocytes through mechanisms involving p38 MAP kinase and NF-kB signalling pathways activated by RAGE, ERS and oxidative stress, thus contributing to diabetic atherosclerosis.

Keywords

Endoplasmic reticulum stress Endothelial cell Glycated LDL Oxidative stress RAGE VCAM-1 

Notes

Acknowledgments

The authors thank Ms. Daniela Rogoz and Ms. Cristina Dobre for their skilful technical assistance. This work was supported by the Romanian Academy, the Romanian Ministry of National Education PN-II-PT-PCCA-2011-3.1-0184 project (Grant Number PCCA-127/2012) and PN-II-RU-TE-2014-4-0506 project (Grant Number TE 11/2015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

11010_2016_2724_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. 1.
    Basha B, Samuel SM, Triggle CR, Ding H (2012) Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp Diabetes Res. doi: 10.1155/2012/481840 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114(6):597–605. doi: 10.1161/CIRCULATIONAHA.106.621854 CrossRefPubMedGoogle Scholar
  3. 3.
    Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11(12):3071–3109. doi: 10.1089/ARS.2009.2484 CrossRefPubMedGoogle Scholar
  4. 4.
    Vlassara H, Striker GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7(9):526–539. doi: 10.1038/nrendo.2011.74 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Younis N, Charlton-Menys V, Sharma R, Soran H, Durrington PN (2009) Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 202(1):162–168. doi: 10.1016/j.atherosclerosis.2008.04.036 CrossRefPubMedGoogle Scholar
  6. 6.
    Sima A, Stancu C (2002) Modified lipoproteins accumulate in human coronary atheroma. J Cell Mol Med 6(1):110–111. doi: 10.1111/j.1582-4934.2002.tb00316.x CrossRefPubMedGoogle Scholar
  7. 7.
    Mestas J, Ley K (2008) Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18(6):228–232. doi: 10.1016/j.tcm.2008.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jager A, van Hinsbergh VW, Kostense PJ, Emeis JJ, Nijpels G, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD (2000) Increased levels of soluble vascular cell adhesion molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes: the Hoorn study. Diabetes 49(3):485–491CrossRefPubMedGoogle Scholar
  9. 9.
    Sozer V, Himmetoglu S, Korkmaz GG, Kaya S, Aydin S, Yumuk V, Hatemi H, Uzun H (2014) Paraoxonase, oxidized low density lipoprotein, monocyte chemoattractant protein-1 and adhesion molecules are associated with macrovascular complications in patients with type 2 diabetes mellitus. Minerva Med 105(3):237–244PubMedGoogle Scholar
  10. 10.
    Toma L, Stancu CS, Sanda GM, Sima AV (2011) Anti-oxidant and anti-inflammatory mechanisms of amlodipine action to improve endothelial cell dysfunction induced by irreversibly glycated LDL. Biochem Biophys Res Commun 411(1):202–207. doi: 10.1016/j.bbrc.2011.06.137 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao R, Ren S, Moghadasain MH, Rempel JD, Shen GX (2014) Involvement of fibrinolytic regulators in adhesion of monocytes to vascular endothelial cells induced by glycated LDL and to aorta from diabetic mice. J Leukoc Biol 95(6):941–949. doi: 10.1189/jlb.0513262 CrossRefPubMedGoogle Scholar
  12. 12.
    Toma L, Stancu CS, Botez GM, Sima AV, Simionescu M (2009) Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun 390(3):877–882. doi: 10.1016/j.bbrc.2009.10.066 CrossRefPubMedGoogle Scholar
  13. 13.
    Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M (2010) Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med 14(12):2790–2802. doi: 10.1111/j.1582-4934.2009.00933.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  15. 15.
    Manduteanu I, Pirvulescu M, Gan AM, Stan D, Simion V, Dragomir E, Calin M, Manea A, Simionescu M (2010) Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochem Biophys Res Commun 391(3):1443–1448. doi: 10.1016/j.bbrc.2009.12.089 CrossRefPubMedGoogle Scholar
  16. 16.
    Deleanu M, Sanda GM, Stancu CS, Popa ME, Sima AV (2016) Profiles of fatty acids and the main lipid peroxidation products of human atherogenic low density lipoproteins. Rev Chim (Bucharest) 67(1):8–12Google Scholar
  17. 17.
    Tames FJ, Mackness MI, Arrol S, Laing I, Durrington PN (1992) Non-enzymatic glycation of apolipoprotein B in the sera of diabetic and non-diabetic subjects. Atherosclerosis 93(3):237–244CrossRefPubMedGoogle Scholar
  18. 18.
    Williams KJ, Tabas I (1998) The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9(5):471–474CrossRefPubMedGoogle Scholar
  19. 19.
    Stancu CS, Toma L, Sima AV (2012) Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res 349(2):433–446. doi: 10.1007/s00441-012-1437-1 CrossRefPubMedGoogle Scholar
  20. 20.
    Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22(10):1649–1654CrossRefPubMedGoogle Scholar
  21. 21.
    Stirban A, Gawlowski T, Roden M (2014) Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 3(2):94–108. doi: 10.1016/j.molmet.2013.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18. doi: 10.1038/sj.cr.7290257 CrossRefPubMedGoogle Scholar
  23. 23.
    Cybulsky MI, Fries JW, Williams AJ, Sultan P, Eddy R, Byers M, Shows T, Gimbrone MA Jr, Collins T (1991) Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene. Proc Natl Acad Sci USA 88(17):7859–7863CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao R, Xie X, Le K, Li W, Moghadasian MH, Beta T, Shen GX (2015) Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: protective effect of Saskatoon berry powder and cyanidin glycans. J Nutr Biochem 26(11):1248–1253. doi: 10.1016/j.jnutbio.2015.05.015 CrossRefPubMedGoogle Scholar
  25. 25.
    Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318(5852):944–949. doi: 10.1126/science.1146361 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yamagishi N, Ueda T, Mori A, Saito Y, Hatayama T (2012) Decreased expression of endoplasmic reticulum chaperone GRP78 in liver of diabetic mice. Biochem Biophys Res Commun 417(1):364–370. doi: 10.1016/j.bbrc.2011.11.118 CrossRefPubMedGoogle Scholar
  27. 27.
    Hernandez Vera R, Vilahur G, Ferrer-Lorente R, Pena E, Badimon L (2012) Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol 32(9):2141–2148. doi: 10.1161/ATVBAHA.112.255281 CrossRefPubMedGoogle Scholar
  28. 28.
    Wong DP, Chu JM, Hung VK, Lee DK, Cheng CH, Yung KK, Yue KK (2013) Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells. Neurochem Int 63(6):551–560. doi: 10.1016/j.neuint.2013.09.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, Song QL, Guo DA, Yu HM, Li XJ (2009) Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res 81(1):148–158. doi: 10.1093/cvr/cvn262 CrossRefPubMedGoogle Scholar
  30. 30.
    Xue J, Wei J, Dong X, Zhu C, Li Y, Song A, Liu Z (2013) ABCG1 deficiency promotes endothelial apoptosis by endoplasmic reticulum stress-dependent pathway. J Physiol Sci: JPS 63(6):435–444. doi: 10.1007/s12576-013-0281-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H (2001) Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem 276(5):3195–3202. doi: 10.1074/jbc.M006545200 CrossRefPubMedGoogle Scholar
  32. 32.
    Luo Y, Li SJ, Yang J, Qiu YZ, Chen FP (2013) HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem Biophys Res Commun 438(4):732–738. doi: 10.1016/j.bbrc.2013.07.098 CrossRefPubMedGoogle Scholar
  33. 33.
    Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol. doi: 10.1155/2012/936486 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sheikh-Ali M, Sultan S, Alamir AR, Haas MJ, Mooradian AD (2010) Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Res Clin Pract 87(2):161–166. doi: 10.1016/j.diabres.2009.10.023 CrossRefPubMedGoogle Scholar
  35. 35.
    Shen L, Sevanian A (2001) OxLDL induces macrophage gamma-GCS-HS protein expression: a role for oxLDL-associated lipid hydroperoxide in GSH synthesis. J Lipid Res 42(5):813–823PubMedGoogle Scholar
  36. 36.
    Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89(1):27–71. doi: 10.1152/physrev.00014.2008 CrossRefPubMedGoogle Scholar
  37. 37.
    Wen Y, Skidmore JC, Porter-Turner MM, Rea CA, Khokher MA, Singh BM (2002) Relationship of glycation, antioxidant status and oxidative stress to vascular endothelial damage in diabetes. Diabetes Obes Metab 4(5):305–308. doi: 10.1046/j.1463-1326.2002.00212.x CrossRefPubMedGoogle Scholar
  38. 38.
    Norman MU, James WG, Hickey MJ (2008) Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/faslpr mice. J Leukoc Biol 84(1):68–76. doi: 10.1189/jlb.1107796 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, Ley K (1999) Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 84(11):1237–1244CrossRefPubMedGoogle Scholar
  40. 40.
    Wang YI, Bettaieb A, Sun C, DeVerse JS, Radecke CE, Mathew S, Edwards CM, Haj FG, Passerini AG, Simon SI (2013) Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS One 8(10):e78322. doi: 10.1371/journal.pone.0078322 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhao W, Wu C, Chen X (2015) Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-kappaB pathways. Cell Adhes Migr. doi: 10.1080/19336918.2015.1119361 Google Scholar
  42. 42.
    Kawanami D, Matoba K, Okada R, Tsukamoto M, Kinoshita J, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K (2013) Fasudil inhibits ER stress-induced VCAM-1 expression by modulating unfolded protein response in endothelial cells. Biochem Biophys Res Commun 435(2):171–175. doi: 10.1016/j.bbrc.2013.04.091 CrossRefPubMedGoogle Scholar
  43. 43.
    Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci. doi: 10.3389/fncel.2014.00213 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Darling NJ (1843) Cook SJ (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta 10:2150–2163. doi: 10.1016/j.bbamcr.2014.01.009 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laura Toma
    • 1
  • Gabriela M. Sanda
    • 1
  • Mariana Deleanu
    • 1
    • 2
  • Camelia S. Stancu
    • 1
  • Anca V. Sima
    • 1
  1. 1.Lipidomics DepartmentInstitute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian AcademyBucharestRomania
  2. 2.Faculty of BiotechnologyUniversity of Agronomical Sciences and Veterinary MedicineBucharestRomania

Personalised recommendations