Molecular and Cellular Biochemistry

, Volume 416, Issue 1–2, pp 23–32 | Cite as

Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation

  • Xiaoping Yang
  • Duobing Zou
  • Songtao Tang
  • Tingting Fan
  • Huan Su
  • Ruolei Hu
  • Qing Zhou
  • Shuyu Gui
  • Li Zuo
  • Yuan Wang


The increased intestinal permeability and functional impairment play an important role in type 2 diabetes (T2D), and melatonin may possess enteroprotection properties. Therefore, we used streptozotocin-induced diabetic rat model to investigate the regulation of intestinal permeability by melatonin. Rats were randomly divided into three groups, including control, diabetes mellitus (DM), and DM rats treated with melatonin. Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks. The DM rats significantly increased the serum fasting blood glucose and lipid levels, which were alleviated by melatonin treatment. Importantly, the intestinal epithelial permeability was significantly increased in DM rats but was ameliorated following treatment with melatonin. These findings also indicated the expression of myosin light chain kinase (MLCK) and phosphorylation of MLC targeting subunit (MYPT) induced myosin light chain (MLC) phosphorylation level was markedly elevated in hyperglycemic and hyperlipidemic status. They were partly associated with down-regulated membrane type 1 and 2 (MT1 and MT2) expression, and up-regulated Rho-associated protein kinase (ROCK) expression and increased extracellular signal-regulated kinase (ERK) phosphorylation. However, the changes in target protein expression were reversed by melatonin. In conclusion, our results show melatonin beneficial effects on impaired intestinal epithelial permeability in T2D by suppressing ERK/MLCK- and ROCK/MCLP-dependent MLC phosphorylation.


Diabetes Intestinal epithelial permeability Melatonin Myosin light chain kinase 



This study was supported by the National Nature Science Research Grants (Nos.: 81272399, 81470568), Fund of colleges excellent young key projects in Anhui Province (No. 2013SQRL101ZD), and the Anhui Natural Science Foundation (No. 1508085QH167), Doctor fund of Anhui Medical University (No. 0108020103).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11010_2016_2691_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)


  1. 1.
    Bytzer P, Talley NJ, Hammer J, Young LJ, Jones MP, Horowitz M (2002) GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol 97(3):604–611CrossRefPubMedGoogle Scholar
  2. 2.
    Visser J, Rozing J, Sapone A, Lammers K, Fasano A (2009) Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci 1165:195–205CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arrieta MC, Bistritz L, Meddings JB (2006) Alterations in intestinal permeability. Gut 55:1512–1520CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mooradian AD, Morley JE, Levine AS, Prigge WF, Gebhard RL (1986) Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29:221–224CrossRefPubMedGoogle Scholar
  5. 5.
    Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368CrossRefPubMedGoogle Scholar
  6. 6.
    Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449CrossRefPubMedGoogle Scholar
  7. 7.
    Xue Y, Wang H, Du M, Zhu MJ (2014) Maternal obesity induces gut inflammation and impairs gut epithelial barrier function in non-obese diabetic mice. J Nutr Biochem 25:758–764CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Galipeau HJ, Rulli NE, Jury J, Huang X, Araya R, Murray JA, David CS, Chirdo FG, McCoy KD, Verdu EF (2011) Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice. J Immunol 187:4338–4346CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Horton F, Wright J, Smith L, Hinton PJ, Robertson MD (2014) Increased intestinal permeability to oral chromium (51Cr)-EDTA in human Type 2 diabetes. Diabet Med 31:559–563CrossRefPubMedGoogle Scholar
  10. 10.
    Yu M, Yang S, Qiu Y, Chen G, Wang W, Xu C, Cai W, Sun L, Xiao W, Yang H (2015) Par-3 modulates intestinal epithelial barrier function through regulating intracellular trafficking of occludin and myosin light chain phosphorylation. J Gastroenterol 50:1103–1113CrossRefPubMedGoogle Scholar
  11. 11.
    Eutamene H, Theodorou V, Schmidlin F, Tondereau V, Garcia-Villar R, Salvador-Cartier C, Chovet M, Bertrand C, Bueno L (2005) LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK. Eur Respir J 25:789–796CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Sadi R, Ye D, Dokladny K, Ma TY (2008) Mechanism of IL-1beta—induced increase in intestinal epithelial tight junction permeability. J Immunol 180:5653–5661CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Suzuki T (2012) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659CrossRefPubMedGoogle Scholar
  14. 14.
    Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358CrossRefPubMedGoogle Scholar
  15. 15.
    Clayburgh DR, Barrett TA, Tang Y, Meddings JB, Van Eldik LJ, Watterson DM, Clarke LL, Mrsny RJ, Turner JR (2005) Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest 115:2702–2715CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chew TL, Wolf WA, Gallagher PJ, Matsumura F, Chisholm RL (2002) A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J Cell Biol 156:543–553CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chu J, Miller CT, Kislitsyna K, Laine GA, Stewart RH, Cox CS, Uray KS (2012) Decreased myosin phosphatase target subunit 1(MYPT1) phosphorylation via attenuated rho kinase and zipper-interacting kinase activities in edematous intestinal smooth muscle. Neurogastroenterol Motil 24:257–266CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tang ST, Su H, Zhang Q, Tang HQ, Wang CJ, Zhou Q, Wei W, Zhu HQ, Wang Y (2015) Melatonin attenuates aortic endothelial permeability and arteriosclerosis in streptozotocin-induced diabetic rats: possible role of MLCK- and MLCP-dependent MLC phosphorylation. J Cardiovasc Pharmacol Ther 21:82–92CrossRefPubMedGoogle Scholar
  19. 19.
    Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288:G422–G430CrossRefPubMedGoogle Scholar
  20. 20.
    Al-Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A, Watterson DM, Ma TY (2012) Mechanism of interleukin-1β induced-increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res 32:474–484CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Feighery LM, Cochrane SW, Quinn T, Baird AW, O’Toole D, Owens SE, O’Donoghue D, Mrsny RJ, Brayden DJ (2008) Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res 25:1377–1386CrossRefPubMedGoogle Scholar
  22. 22.
    Liu X, Xu J, Mei Q, Han L, Huang J (2013) Myosin light chain kinase inhibitor inhibits dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 58:107–114CrossRefPubMedGoogle Scholar
  23. 23.
    Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025CrossRefPubMedGoogle Scholar
  24. 24.
    Raikhlin NT, Kvetnoy IM, Tolkachev VN (1975) Melatonin may be synthesised in enterochromaffin cells. Nature 255:344–345CrossRefPubMedGoogle Scholar
  25. 25.
    Paredes SD, Terrón MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodríguez AB (2007) Effect of exogenous melatonin on viability, ingestion capacity, and free-radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem 304:305–314CrossRefPubMedGoogle Scholar
  26. 26.
    Park K, Lee Y, Park S, Lee S, Hong Y, Kil Lee S, Hong Y (2010) Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J Pineal Res 48:270–281CrossRefPubMedGoogle Scholar
  27. 27.
    Lee PP, Pang SF (1993) Melatonin and its receptors in the gastrointestinal tract. Biol Signals 2:181–193CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu HQ, Cheng XW, Xiao LL, Jiang ZK, Zhou Q, Gui SY, Wei W, Wang Y (2008) Melatonin prevents oxidized low-density lipoprotein-induced increase of myosin light chain kinase activation and expression in HUVEC through ERK/MAPK signal transduction. J Pineal Res 45:328–334CrossRefPubMedGoogle Scholar
  29. 29.
    Tan J, Wang Y, Xia Y, Zhang N, Sun X, Yu T, Lin L (2014) Melatonin protects the esophageal epithelial barrier by suppressing the transcription, expression and activity of myosin light chain kinase through ERK1/2 signal transduction. Cell Physiol Biochem 34:2117–2127CrossRefPubMedGoogle Scholar
  30. 30.
    Sommansson A, Nylander O, Sjöblom M (2013) Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor–dependent pathway in rats in vivo. J Pineal Res 54:282–291CrossRefPubMedGoogle Scholar
  31. 31.
    Lange S, Delbro DS, Jennische E (1994) Evans blue permeation of intestinal mucosa in the rat. Scand J Gastroenterol 29:38–46CrossRefPubMedGoogle Scholar
  32. 32.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481CrossRefPubMedGoogle Scholar
  33. 33.
    Weir GC, Bonner-Weir S (2004) Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16–S21CrossRefPubMedGoogle Scholar
  34. 34.
    Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 52:812–817CrossRefPubMedGoogle Scholar
  35. 35.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, an risk of developing type 2 diabetes mellitus. JAMA 286:327–334CrossRefPubMedGoogle Scholar
  36. 36.
    Yajima S, Morisaki H, Serita R, Suzuki T, Katori N, Asahara T, Nomoto K, Kobayashi F, Ishizaka A, Takeda J (2009) Tumor necrosis factor-alpha mediates hyperglycemia-augmented gut barrier dysfunction in endotoxemia. Crit Care Med 37:1024–1030CrossRefPubMedGoogle Scholar
  37. 37.
    Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253:C171–C175PubMedGoogle Scholar
  38. 38.
    Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T et al (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260CrossRefPubMedGoogle Scholar
  39. 39.
    Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M et al (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248CrossRefPubMedGoogle Scholar
  40. 40.
    Ruemmele FM, Seidman EG (1998) Cytokine–intestinal epithelial cell interactions: implications for immune mediated bowel disorders. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 39:1–8PubMedGoogle Scholar
  41. 41.
    Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355:1518–1519CrossRefPubMedGoogle Scholar
  42. 42.
    Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, Mohan V, Balasubramanyam M (2014) Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of pro-inflammation in patients with type 2 diabetes. Mol Cell Biochem 388:203–210CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y (2014) Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 106:312–318CrossRefPubMedGoogle Scholar
  44. 44.
    Su L, Shen L, Clayburgh DR, Nalle SC, Sullivan EA, Meddings JB, Abraham C, Turner JR (2009) Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136:551–563CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ivanov AI, Bachar M, Babbin BA, Adelstein RS, Nusrat A, Parkos CA (2007) A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS One 2:e658CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Buendia I, Navarro E, Michalska P, Gameiro I, Egea J, Abril S, López A, González-Lafuente L, López MG, León R (2015) New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med Chem 7:1961–1969CrossRefPubMedGoogle Scholar
  47. 47.
    Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17(Suppl 1):76–83CrossRefPubMedGoogle Scholar
  48. 48.
    Sommansson A, Saudi WS, Nylander O, Sjöblom M (2013) Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 305:G95–G105CrossRefPubMedGoogle Scholar
  49. 49.
    Siah KT, Wong RK, Ho KY (2014) Melatonin for the treatment of irritable bowel syndrome. World J Gastroenterol 20:2492–2498CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lu WZ, Gwee KA, Moochhalla S, Ho KY (2005) Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther 22:927–934CrossRefPubMedGoogle Scholar
  51. 51.
    Swanson GR, Gorenz A, Shaikh M, Desai V, Forsyth C, Fogg L, Burgess HJ, Keshavarzian A (2015) Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 308:G1004–G1011CrossRefPubMedGoogle Scholar
  52. 52.
    Cui P, Yu M, Luo Z, Dai M, Han J, Xiu R, Yang Z (2008) Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J Pineal Res 44:107–114PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaoping Yang
    • 1
  • Duobing Zou
    • 1
  • Songtao Tang
    • 2
  • Tingting Fan
    • 3
  • Huan Su
    • 1
  • Ruolei Hu
    • 1
    • 4
  • Qing Zhou
    • 1
    • 4
  • Shuyu Gui
    • 3
    • 4
  • Li Zuo
    • 1
    • 4
  • Yuan Wang
    • 1
    • 4
  1. 1.Laboratory of Molecular Biology and Department of BiochemistryAnhui Medical UniversityHefeiPeople’s Republic of China
  2. 2.Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople’s Republic of China
  3. 3.Department of Respiratory MedicineThe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople’s Republic of China
  4. 4.Key Laboratory of Gene Research of Anhui ProvinceHefeiPeople’s Republic of China

Personalised recommendations