Skip to main content

Advertisement

Log in

Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

ANXA2:

Annexin A2

AMPK:

AMP-activated protein kinase

ATP5B:

ATP synthase subunit beta, mitochondrial

CA3:

Carbonic anhydrase 3

CS:

Citrate synthase

C/EBP/Cebp :

CCAAT/enhancer-binding protein/encoding gene

FABP4:

Fatty acid binding protein 4

HADH:

Trifunctional enzyme subunit alpha

HSL:

Hormone-sensitive lipase

HSP90:

Heat shock protein 90 kDa

PGC-1α:

Peroxisome proliferator-activated receptor gamma co-activator 1-alpha

MDH:

Malate dehydrogenase

PPAR:

Peroxisome proliferator-activated receptor

PRDM16/Prdm16 :

PR domain-containing 16/encoding gene

UCP/Ucp :

Uncoupling protein/encoding gene

WAT:

White adipose tissue

References

  1. Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209

    Article  PubMed  Google Scholar 

  2. Tonstad S, Despres JP (2011) Treatment of lipid disorders in obesity. Expert Rev Cardiovasc Ther 9:1069–1080

    Article  PubMed  Google Scholar 

  3. Chang J, Oikawa S, Iwahashi H, Kitagawa E, Takeuchi I, Yuda M, Aoki C, Yamada Y, Ichihara G, Kato M, Ichihara S (2014) Expression of proteins associated with adipocyte lipolysis was significantly changed in the adipose tissues of the obese spontaneously hypertensive/NDmcr-cp rat. Diabetol Metab Syndr 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noreldin AA, Abd Elhamid AM, Hashem AM, Afifi AM (2013) A pilot study on the use of injection lipolysis in visceral adipose tissues. Aesthet Surg J 33:431–435

    Article  PubMed  Google Scholar 

  5. Mercer SW, Williamson DH (1988) The influence of starvation and natural refeeding on the rate of triacylglycerol/fatty acid substrate cycling in brown adipose tissue and different white adipose sites of the rat in vivo. The role of insulin and the sympathetic nervous system. Biosci Rep 8:147–153

    Article  CAS  PubMed  Google Scholar 

  6. Ricquier D (1998) Neonatal brown adipose tissue, UCP1 and the novel uncoupling proteins. Biochem Soc Trans 26:120–123

    Article  CAS  PubMed  Google Scholar 

  7. Galmozzi A, Sonne SB, Altshuler-Keylin S, Hasegawa Y, Shinoda K, Luijten IH, Chang JW, Sharp LZ, Cravatt BF, Saez E, Kajimura S (2014) ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue. Cell Rep 9:1584–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy NL, Jones TA, Wayte SC, Adesanya O, Sankar S, Yeo YC, Tripathi G, McTernan PG, Randeva HS, Kumar S, Hutchinson CE, Barber TM (2014) Identification of brown adipose tissue using MR imaging in a human adult with histological and immunohistochemical confirmation. J Clin Endocrinol Metab 99:E117–E121

    Article  PubMed  Google Scholar 

  9. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263

    Article  CAS  PubMed  Google Scholar 

  10. Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64:2346–2351

    Article  CAS  PubMed  Google Scholar 

  11. Yoshitomi H, Yamazaki K, Abe S, Tanaka I (1998) Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment. Biochem Biophys Res Commun 253:85–91

    Article  CAS  PubMed  Google Scholar 

  12. Mulligan JD, Gonzalez AA, Stewart AM, Carey HV, Saupe KW (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol 580:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonet ML, Oliver P, Palou A (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 1831:969–985

    Article  CAS  PubMed  Google Scholar 

  14. Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M (2014) Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. Plos One 9:e103093

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G (2014) Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5:5493

    Article  CAS  PubMed  Google Scholar 

  16. Sellayah D, Bharaj P, Sikder D (2011) Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 14:478–490

    Article  CAS  PubMed  Google Scholar 

  17. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    Article  CAS  PubMed  Google Scholar 

  18. Shehzad A, Ha T, Subhan F, Lee YS (2011) New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr 50:151–161

    Article  CAS  PubMed  Google Scholar 

  19. Lone J, Choi JH, Kim SW, Yun JW (2016) Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 27:193–202

    Article  CAS  PubMed  Google Scholar 

  20. Joo JI, Oh TS, Kim DH, Choi DK, Wang X, Choi JW, Yun JW (2011) Differential expression of adipose tissue proteins between obesity-susceptible and -resistant rats fed a high-fat diet. Proteomics 11:1429–1448

    Article  CAS  PubMed  Google Scholar 

  21. Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M (2009) Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab 10:324–335

    Article  CAS  PubMed  Google Scholar 

  22. Kamal AH, Kim WK, Cho K, Park A, Min JK, Han BS, Park SG, Lee SC, Bae KH (2013) Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J Proteomics 94:327–336

    Article  CAS  PubMed  Google Scholar 

  23. Birner-Gruenberger R, Susani-Etzerodt H, Waldhuber M, Riesenhuber G, Schmidinger H, Rechberger G, Kollroser M, Strauss JG, Lass A, Zimmermann R, Haemmerle G, Zechner R, Hermetter A (2005) The lipolytic proteome of mouse adipose tissue. Mol Cell Proteomics 4:1710–1717

    Article  CAS  PubMed  Google Scholar 

  24. Okita N, Hayashida Y, Kojima Y, Fukushima M, Yuguchi K, Mikami K, Yamauchi A, Watanabe K, Noguchi M, Nakamura M, Toda T, Higami Y (2012) Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats. Mech Ageing Dev 133:255–266

    Article  CAS  PubMed  Google Scholar 

  25. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  CAS  PubMed  Google Scholar 

  26. Kim CY, Le TT, Chen C, Cheng JX, Kim KH (2011) Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem 22:910–920

    Article  CAS  PubMed  Google Scholar 

  27. Choi DK, Oh TS, Choi JW, Mukherjee R, Wang X, Liu H, Yun JW (2011) Gender difference in proteome of brown adipose tissues between male and female rats exposed to a high fat diet. Cell Physiol Biochem 28:933–948

    Article  CAS  PubMed  Google Scholar 

  28. Kim SW, Park TJ, Choi JH, Aseer KR, Choi JY, Kim YJ, Choi MS, Yun JW (2015) Differential protein expression in white adipose tissue from obesity-prone and obesity-resistant mice in response to high fat diet and anti-obesity herbal medicines. Cell Physiol Biochem 35:1482–1498

    Article  CAS  PubMed  Google Scholar 

  29. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  PubMed  Google Scholar 

  30. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  32. Chaudhari HN, Kim SW, Yun JW (2015) Gender-dimorphic regulation of DJ1 and its interactions with metabolic proteins in streptozotocin-induced diabetic rats. J Cell Mol Med 19:996–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, Wei M, Jiang Y, Zhang Y, Wang L, Lei X, Lu Z (2015) Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun 466:247–253

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Wu L, Deng G, Li N, Chu X, Guo F, Li D (2008) Characterization of mitochondrial trifunctional protein and its inactivation study for medicine development. Biochim Biophys Acta 1784:1742–1749

    Article  CAS  PubMed  Google Scholar 

  35. Foley JE (1992) Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care 15:773–784

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Perez R, Garcia-Santos E, Ortega-Delgado FJ, Lopez JA, Camafeita E, Ricart W, Fernandez-Real JM, Peral B (2012) Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteomics 75:783–795

    Article  CAS  PubMed  Google Scholar 

  37. Lindinger PW, Christe M, Eberle AN, Kern B, Peterli R, Peters T, Jayawardene KJ, Fearnley IM, Walker JE (2015) Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. J Proteomics 124:79–87

    Article  CAS  PubMed  Google Scholar 

  38. Abe H, Ohtake A, Yamamoto S, Satoh Y, Takayanagi M, Amaya Y, Takiguchi M, Sakuraba H, Suzuki Y, Mori M et al (1993) Cloning and sequence analysis of a full length cDNA encoding human mitochondrial 3-oxoacyl-CoA thiolase. Biochim Biophys Acta 1216:304–306

    Article  CAS  PubMed  Google Scholar 

  39. Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Ko YG (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6:2444–2453

    Article  CAS  PubMed  Google Scholar 

  40. Geyik E, Igci YZ, Pala E, Suner A, Borazan E, Bozgeyik I, Bayraktar E, Bayraktar R, Ergun S, Cakmak EA, Gokalp A, Arslan A (2014) Investigation of the association between ATP2B4 and ATP5B genes with colorectal cancer. Gene 540:178–182

    Article  CAS  PubMed  Google Scholar 

  41. McEvily AJ, Mullinax TR, Dulin DR, Harrison JH (1985) Regulation of mitochondrial malate dehydrogenase: kinetic modulation independent of subunit interaction. Arch Biochem Biophys 238:229–236

    Article  CAS  PubMed  Google Scholar 

  42. Zhou SL, Li MZ, Li QH, Guan JQ, Li XW (2012) Differential expression analysis of porcine MDH1, MDH2 and ME1 genes in adipose tissues. Genet Mol Res 11:1254–1259

    Article  CAS  PubMed  Google Scholar 

  43. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63:3253–3265

    Article  CAS  PubMed  Google Scholar 

  44. Harada K, Shen WJ, Patel S, Natu V, Wang J, Osuga J, Ishibashi S, Kraemer FB (2003) Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab 285:E1182–E1195

    Article  CAS  PubMed  Google Scholar 

  45. Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393

    Article  CAS  PubMed  Google Scholar 

  46. Bouwman FG, Wang P, van Baak M, Saris WH, Mariman EC (2014) Increased beta-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance. Obesity (Silver Spring) 22:819–827

    Article  CAS  Google Scholar 

  47. Strom K, Hansson O, Lucas S, Nevsten P, Fernandez C, Klint C, Moverare-Skrtic S, Sundler F, Ohlsson C, Holm C (2008) Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice. Plos One 3:e1793

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leggate M, Carter WG, Evans MJ, Vennard RA, Nimmo MA, Sribala-Sundaram S (1985) Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol 112:1353–1360

    Article  Google Scholar 

  49. Mukherjee R, Kim SW, Park T, Choi MS, Yun JW (2015) Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes (Lond) 39:1349–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researcher Program (2013R1A2A2A05004195) and SRC Program (Center for Food & Nutritional Genomics, Grant number 2015R1A5A6001906) through a NRF Grant funded by the Ministry of Science, ICT and Future Planning, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Woo Kim or Jong Won Yun.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.W., Choi, J.H., Mukherjee, R. et al. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin. Mol Cell Biochem 415, 51–66 (2016). https://doi.org/10.1007/s11010-016-2676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2676-3

Keywords

Navigation