Molecular and Cellular Biochemistry

, Volume 413, Issue 1–2, pp 189–198 | Cite as

Caffeic acid phenethyl ester activates pro-apoptotic and epithelial–mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis

  • Claudia Gherman
  • Ovidiu Leonard Braicu
  • Oana Zanoaga
  • Anca Jurj
  • Valentina Pileczki
  • Mahafarin Maralani
  • Flaviu Drigla
  • Cornelia Braicu
  • Liviuta Budisan
  • Patriciu Achimas-Cadariu
  • Ioana Berindan-Neagoe


Ovarian cancer is a highly aggressive pathology, displaying a poor prognosis and chemoresistance to classical therapy. The present study was conducted to evaluate the effect of caffeic acid phenethyl ester (CAPE) on survival of ovarian cancer cell lines, A2780 (sensitive to cisplatin) and A2780cis (resistant to cisplatin). MTT assay was used to evaluate cell viability, while the apoptotic processes were examined by flow cytometry and qRT-PCR. A reduction of cell proliferation and activation of the apoptosis was observed in both cell lines. qRT-PCR evaluation demonstrated the activation of the pro-apoptotic genes (BAD, CASP8, FAS, FADD, p53) in both cell lines. The limited therapeutic effect in A2780 cells is explained by the activation of epithelial–mesenchymal transition-related genes (ZEB1, ZEB2, or TGFBB1) as displayed by Ingenuity Network analysis. Overall data suggest that CAPE can be used as an alternative in sensitizing cells to chemotherapy.


Caffeic acid phenethyl ester Apoptosis Epithelial–mesenchymal transition Ovarian cancer cells 



Dr. Gherman and Dr. Braicu received a fellowship financed by the Grant No. 159/1.5/s/138776 with title ‘Institutional collaborative model of biomedical scientific research transposed in clinical practice—TRANSCENT’.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Faber MT, Kjær SK, Dehlendorff C, Chang-Claude J, Andersen KK, Høgdall E, Webb PM, Jordan SJ, Australian Cancer Study (Ovarian Cancer), Australian Ovarian Cancer Study Group, Rossing MA, Doherty JA, Lurie G, Thompson PJ, Carney ME, Goodman MT, Ness RB, Modugnos F, Edwards RP, Bunker CH, Goode EL, Fridley BL, Vierkant RA, Larson MC, Schildkraut J, Cramer DW, Terry KL, Vitonis AF, Bandera EV, Olson SH, King M, Chandran U, Kiemeney LA, Massuger LFAG, van Altena AM, Vermeulen SH, Brinton L, Wentzensen N, Lissowska J, Yang HP, Moysich KB, Odunsi K, Kasza K, Odunsi-Akanji O, Song H, Pharaoh P, Shah M, Whittemore AS, McGuire V, Sieh W, Sutphen R, Menon U, Gayther SA, Ramus SJ, Gentry-Maharaj A, Pearce CL, Wu AH, Pike MC, Risch HA, Jensen A, Ovarian Cancer Association Consortium (2013) Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case–control studies. Cancer Causes Control 24(5):989–1004. doi:  10.1007/s10552-013-0174-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Solar P, Sytkowski AJ (2011) Differentially expressed genes associated with cisplatin resistance in human ovarian adenocarcinoma cell line A2780. Cancer Lett 309:11–18. doi: 10.1016/j.canlet.2011.05.008 CrossRefPubMedGoogle Scholar
  3. 3.
    Shin SY, Jung H, Ahn S, Hwang D, Yoon H, Hyun J, Yong Y, Cho HJ, Koh D, Lee YH, Lim Y (2014) Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg Med Chem 22:1809–1820. doi: 10.1016/j.bmc.2014.01.058 CrossRefPubMedGoogle Scholar
  4. 4.
    Kart A, Cigremis Y, Karaman M, Ozen H (2010) Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp Toxicol Pathol 62:45–52. doi: 10.1016/j.etp.2009.02.066 CrossRefPubMedGoogle Scholar
  5. 5.
    Andrews PA (1994) Mechanisms of acquired resistance to cisplatin. Cancer Treat Res 73:217–248CrossRefPubMedGoogle Scholar
  6. 6.
    Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M (1996) Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 16:16–39PubMedGoogle Scholar
  7. 7.
    Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269:787–790PubMedGoogle Scholar
  8. 8.
    Johnson SW, Laub PB, Beesley JS, Ozols RF, Hamilton TC (1997) Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res 57:850–856PubMedGoogle Scholar
  9. 9.
    Yan C, Yang F, Zhou C, Chen X, Han X, Liu X, Ma H, Zheng W (2015) MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer. Int J Clin Exp Pathol 8:2710–2718PubMedCentralPubMedGoogle Scholar
  10. 10.
    Huang S, Zhang CP, Wang K, Li GQ, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632. doi: 10.3390/molecules191219610 CrossRefPubMedGoogle Scholar
  11. 11.
    Russo A, Longo R, Vanella A (2002) Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73(Suppl 1):S21–S29CrossRefPubMedGoogle Scholar
  12. 12.
    Kuo YY, Jim WT, Su LC, Chung CJ, Lin CY, Huo C, Tseng JC, Huang SH, Lai CJ, Chen BC, Wang BJ, Chan TM, Lin HP, Chang WS, Chang CR, Chuu CP (2015) Caffeic acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 16:10748–10766. doi: 10.3390/ijms160510748 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Koltuksuz U, Irmak MK, Karaman A, Uz E, Var A, Ozyurt H, Akyol O (2000) Testicular nitric oxide levels after unilateral testicular torsion/detorsion in rats pretreated with caffeic acid phenethyl ester. Urol Res 28:360–363CrossRefPubMedGoogle Scholar
  14. 14.
    Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35. doi: 10.1002/jat.941 CrossRefPubMedGoogle Scholar
  15. 15.
    Atik E, Gorur S, Kiper AN (2006) The effect of caffeic acid phenethyl ester (CAPE) on histopathological changes in testicular ischemia-reperfusion injury. Pharmacol Res 54:293–297. doi: 10.1016/j.phrs.2006.06.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Matesanz AI, Souza P (2007) Novel cyclopalladated and coordination palladium and platinum complexes derived from alpha-diphenyl ethanedione bis(thiosemicarbazones): structural studies and cytotoxic activity against human A2780 and A2780cisR carcinoma cell lines. J Inorg Biochem 101:1354–1361. doi: 10.1016/j.jinorgbio.2007.05.013 CrossRefPubMedGoogle Scholar
  17. 17.
    Gulcin I (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217:213–220. doi: 10.1016/j.tox.2005.09.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z, Xie J (2006) Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 17:753–762. doi: 10.1097/ CrossRefPubMedGoogle Scholar
  19. 19.
    Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY, Oh HY (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4:429–436. doi: 10.1016/j.intimp.2004.01.013 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee KJ, Choi JH, Khanal T, Hwang YP, Chung YC, Jeong HG (2008) Protective effect of caffeic acid phenethyl ester against carbon tetrachloride-induced hepatotoxicity in mice. Toxicology 248:18–24. doi: 10.1016/j.tox.2008.03.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Sanderson JT, Clabault H, Patton C, Lassalle-Claux G, Jean-Francois J, Pare AF, Hebert MJ, Surette ME, Touaibia M (2013) Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. Bioorg Med Chem 21:7182–7193. doi: 10.1016/j.bmc.2013.08.057 CrossRefPubMedGoogle Scholar
  22. 22.
    Bonnefond ML, Lambert B, Giffard F, Abeilard E, Brotin E, Louis MH, Gueye MS, Gauduchon P, Poulain L, N’Diaye M (2015) Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis 20:535–550. doi: 10.1007/s10495-015-1095-3 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Borhani N, Manoochehri M, Saleh Gargari S, Ghaffari Novin M, Mansouri A, Omrani MD (2014) Decreased expression of proapoptotic genes caspase-8- and BCL2-associated agonist of cell death (BAD) in ovarian cancer. Clin Ovar Other Gynecol Cancer 7:18–23. doi: 10.1016/j.cogc.2014.12.004 CrossRefGoogle Scholar
  24. 24.
    Huang N, Zhu J, Liu D, Li YL, Chen BJ, He YQ, Liu K, Mo XM, Li WM (2012) Overexpression of Bcl-2-associated death inhibits A549 cell growth in vitro and in vivo. Cancer Biother Radiopharm 27:164–168. doi: 10.1089/cbr.2011.1018 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. doi: 10.1038/nature01322 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Zaravinos A (2015) The regulatory role of microRNAs in EMT and cancer. J Oncol 2015:865816. doi: 10.1155/2015/865816 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. doi: 10.1038/nrm3758 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Sherman-Baust CA, Becker KG, Wood Iii WH, Zhang Y, Morin PJ (2011) Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovar Res 4:21. doi: 10.1186/1757-2215-4-21 CrossRefGoogle Scholar
  30. 30.
    Baribeau S, Chaudhry P, Parent S, Asselin É (2014) Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS One 9:e86987. doi: 10.1371/journal.pone.0086987 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol 41:959–968. doi: 10.3892/ijo.2012.1541 PubMedGoogle Scholar
  32. 32.
    Chan MW, Huang YW, Hartman-Frey C, Kuo CT, Deatherage D, Qin H, Cheng AS, Yan PS, Davuluri RV, Huang TH, Nephew KP, Lin HJ (2008) Aberrant transforming growth factor beta1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer. Neoplasia 10:908–919PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Baldwin RL, Tran H, Karlan BY (2003) Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling. Cancer Res 63:1413–1419PubMedGoogle Scholar
  34. 34.
    Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ, Mok SC (2013) TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 73:5016–5028. doi: 10.1158/0008-5472.CAN-13-0023 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Galani E, Sgouros J, Petropoulou C, Janinis J, Aravantinos G, Dionysiou-Asteriou D, Skarlos D, Gonos E (2002) Correlation of MDR-1, nm23-H1 and H Sema E gene expression with histopathological findings and clinical outcome in ovarian and breast cancer patients. Anticancer Res 22:2275–2280PubMedGoogle Scholar
  36. 36.
    Banu N, Teichman J, Dunlap-Brown M, Villegas G, Tufro A (2006) Semaphorin 3C regulates endothelial cell function by increasing integrin activity. FASEB J 20:2150–2152. doi: 10.1096/fj.05-5698fje CrossRefPubMedGoogle Scholar
  37. 37.
    Nasarre P, Gemmill RM, Drabkin HA (2014) The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 7:1663–1687. doi: 10.2147/OTT.S37744 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lee MP, Yutzey KE (2011) Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 6:e29758. doi: 10.1371/journal.pone.0029758 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Claudia Gherman
    • 1
    • 2
  • Ovidiu Leonard Braicu
    • 2
    • 3
    • 4
  • Oana Zanoaga
    • 2
  • Anca Jurj
    • 2
  • Valentina Pileczki
    • 2
  • Mahafarin Maralani
    • 5
  • Flaviu Drigla
    • 1
  • Cornelia Braicu
    • 2
  • Liviuta Budisan
    • 2
  • Patriciu Achimas-Cadariu
    • 3
    • 4
  • Ioana Berindan-Neagoe
    • 1
    • 2
  1. 1.Department of Functional Genomics and Experimental PathologyThe Oncology Institute “Prof Dr. Ion Chiricuta”Cluj-NapocaRomania
  2. 2.Research Center for Functional Genomics, Biomedicine and Translational Medicine“Iuliu Hatieganu” University of Medicine and PharmacyCluj-NapocaRomania
  3. 3.Department of Surgery“Iuliu Hatieganu” University of Medicine and PharmacyCluj-NapocaRomania
  4. 4.Department of Surgical OncologyThe Oncological Institute “Prof. Dr. Ion Chiricuta”Cluj-NapocaRomania
  5. 5.Department of Molecular MedicineDokuz Eylul UniversityIzmirTurkey

Personalised recommendations