Advertisement

Molecular and Cellular Biochemistry

, Volume 413, Issue 1–2, pp 127–135 | Cite as

Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts

  • Tieqiang Zhao
  • Wenyuan Zhao
  • Weixin Meng
  • Chang Liu
  • Yuanjian Chen
  • Syamal K. Bhattacharya
  • Yao Sun
Article

Abstract

Vascular endothelial growth factor (VEGF)-D is a crucial mediator of angiogenesis. Following myocardial infarction (MI), cardiac VEGF-D and VEGF receptor (VEGFR)-3 are significantly upregulated. In addition to endothelial cells, myofibroblasts at the site of MI highly express VEGFR-3, implicating the involvement of VEGF-D in cardiac fibrogenesis that promotes repair and remodeling. The aim of the current study was to further explore the critical role of VEGF-D in fibrogenic response in myofibroblasts. Myofibroblast proliferation, migration, collagen synthesis, and degradation were investigated in cultured cardiac myofibroblasts subjected to VEGF-D with/without VEGFR antagonist or ERK inhibitor. Vehicle-treated cells served as controls. Myofibroblast proliferation and migration were detected by BrdU assay and Boyden Chamber method, respectively. Expression of type I collagen, metalloproteinase (MMP)-2/-9, tissue inhibitor of MMP (TIMP)-1/-2, and ERK phosphorylation were evaluated by Western blot analyses. Our results revealed that compared to controls, (1) VEGF-D significantly increased myofibroblast proliferation and migration; (2) VEGF-D significantly upregulated type I collagen synthesis in a dose- and time-dependent manner; (3) VEGFR antagonist abolished VEGF-D-induced myofibroblast proliferation and type I collagen release; (4) VEGF-D stimulated MMP-2/-9 and TIMP-1/-2 synthesis; (5) VEGF-D activated ERK phosphorylation; and (6) ERK inhibitor abolished VEGF-D-induced myofibroblast proliferation and type I collagen synthesis. Our in vitro studies have demonstrated that VEGF-D serves as a crucial profibrogenic mediator by stimulating myofibroblast growth, migration and collagen synthesis. Further studies are underway to determine the role of VEGF-D in fibrous tissue formation during cardiac repair following MI.

Keywords

Myofibroblasts VEGF-D Collagen synthesis Collagen degradation ERK phosphorylation 

Notes

Acknowledgments

This work was supported by NIH Heart, Blood, and Lung Institute (1RO1-HL096503, Yao Sun).

Compliance with ethical standards

Conflict of interest

None declared.

References

  1. 1.
    Ma Y, de Castro Bras LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML (2014) Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 466:1113–1127. doi: 10.1007/s00424-014-1463-9 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858. doi: 10.1006/jmcc.1996.0080 CrossRefPubMedGoogle Scholar
  3. 3.
    Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN (2010) Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107:294–304. doi: 10.1161/CIRCRESAHA.110.223172 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71:418–435. doi: 10.1006/mgme.2000.3032 CrossRefPubMedGoogle Scholar
  5. 5.
    Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678. doi: 10.1006/jmcc.1998.0902 CrossRefPubMedGoogle Scholar
  6. 6.
    Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE (2007) Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 171:1431–1440. doi: 10.2353/ajpath.2007.070003 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Liu C, Zhao W, Meng W, Zhao T, Chen Y, Ahokas RA, Liu H, Sun Y (2014) Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol Cell Biochem 397:295–304. doi: 10.1007/s11010-014-2197-x CrossRefPubMedGoogle Scholar
  8. 8.
    Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, Burrell LM (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256. doi: 10.1369/jhc.4A6560.2005 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao T, Zhao W, Chen Y, Liu L, Ahokas RA, Sun Y (2013) Differential expression of vascular endothelial growth factor isoforms and receptor subtypes in the infarcted heart. Int J Cardiol 167:2638–2645. doi: 10.1016/j.ijcard.2012.06.127 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584. doi: 10.1002/dvdy.22280 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao T, Zhao W, Meng W, Liu C, Chen Y, Sun Y (2014) Vascular endothelial growth factor-C: its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol 306:H789–H796. doi: 10.1152/ajpheart.00559.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cohen S, Efraim AN, Levi-Schaffer F, Eliashar R (2011) The effect of hypoxia and cyclooxygenase inhibitors on nasal polyp derived fibroblasts. Am J Otolaryngol 32:564–573. doi: 10.1016/j.amjoto.2010.11.010 CrossRefPubMedGoogle Scholar
  13. 13.
    Ferri N, Panariti F, Ricci C, Maiocchi G, Corsini A (2015) Aliskiren inhibits prorenin-induced human aortic smooth muscle cell migration. J Renin Angiotensin Aldosterone Syst 16:284–291. doi: 10.1177/1470320314528364 CrossRefPubMedGoogle Scholar
  14. 14.
    Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS (2009) Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 296:H627–H638. doi: 10.1152/ajpheart.00444.2008 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Iwasaki T, Mukasa K, Yoneda M, Ito S, Yamada Y, Mori Y, Fujisawa N, Fujisawa T, Wada K, Sekihara H, Nakajima A (2005) Marked attenuation of production of collagen type I from cardiac fibroblasts by dehydroepiandrosterone. Am J Physiol Endocrinol Metab 288:E1222–E1228. doi: 10.1152/ajpendo.00370.2004 CrossRefPubMedGoogle Scholar
  16. 16.
    El Hajj EC, El Hajj MC, Voloshenyuk TG, Mouton AJ, Khoutorova E, Molina PE, Gilpin NW, Gardner JD (2014) Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation. Alcohol Clin Exp Res 38:448–456. doi: 10.1111/acer.12239 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kuo SW, Ke FC, Chang GD, Lee MT, Hwang JJ (2011) Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFbeta1) in the regulation of ovarian angiogenesis. J Cell Physiol 226:1608–1619. doi: 10.1002/jcp.22491 CrossRefPubMedGoogle Scholar
  18. 18.
    Kazenwadel J, Secker GA, Betterman KL, Harvey NL (2012) In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS One 7:e40497. doi: 10.1371/journal.pone.0040497 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Braun OO, Lu D, Aroonsakool N, Insel PA (2010) Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. J Mol Cell Cardiol 49:362–369. doi: 10.1016/j.yjmcc.2010.05.001 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Peterson DJ, Ju H, Hao J, Panagia M, Chapman DC, Dixon IM (1999) Expression of Gi-2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res 41:575–585CrossRefPubMedGoogle Scholar
  21. 21.
    Brenmoehl J, Miller SN, Hofmann C, Vogl D, Falk W, Scholmerich J, Rogler G (2009) Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol 15:1431–1442PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE (2003) Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278:12384–12389. doi: 10.1074/jbc.M208544200 CrossRefPubMedGoogle Scholar
  23. 23.
    Sato M, Hirayama S, Lara-Guerra H, Anraku M, Waddell TK, Liu M, Keshavjee S (2009) MMP-dependent migration of extrapulmonary myofibroblast progenitors contributing to posttransplant airway fibrosis in the lung. Am J Transplant 9:1027–1036. doi: 10.1111/j.1600-6143.2009.02605.x CrossRefPubMedGoogle Scholar
  24. 24.
    Kernochan LE, Tran BN, Tangkijvanich P, Melton AC, Tam SP, Yee HF Jr (2002) Endothelin-1 stimulates human colonic myofibroblast contraction and migration. Gut 50:65–70PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230CrossRefPubMedGoogle Scholar
  26. 26.
    Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41. doi: 10.1111/j.1755-5922.2010.00207.x PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580:2879–2887. doi: 10.1016/j.febslet.2006.03.087 CrossRefPubMedGoogle Scholar
  28. 28.
    Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563. doi: 10.1016/j.cardiores.2004.12.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Muller G (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59:579–592. doi: 10.1046/j.1523-1755.2001.059002579.x CrossRefPubMedGoogle Scholar
  30. 30.
    Clark RA, McCoy GA, Folkvord JM, McPherson JM (1997) TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 170:69–80. doi: 10.1002/(SICI)1097-4652(199701)170:1<69:AID-JCP8>3.0.CO;2-J CrossRefPubMedGoogle Scholar
  31. 31.
    Peng H, Carretero OA, Peterson EL, Rhaleb NE (2010) Ac-SDKP inhibits transforming growth factor-beta1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Am J Physiol Heart Circ Physiol 298:H1357–H1364. doi: 10.1152/ajpheart.00464.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Leeb SN, Vogl D, Falk W, Scholmerich J, Rogler G, Gelbmann CM (2002) Regulation of migration of human colonic myofibroblasts. Growth Factors 20:81–91CrossRefPubMedGoogle Scholar
  33. 33.
    Yanagawa T, Shinozaki T, Watanabe H, Saito K, Raz A, Takagishi K (2012) Vascular endothelial growth factor-D is a key molecule that enhances lymphatic metastasis of soft tissue sarcomas. Exp Cell Res 318:800–808. doi: 10.1016/j.yexcr.2012.01.024 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473. doi: 10.1161/STROKEAHA.108.534644 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Yeh CC, Li H, Malhotra D, Turcato S, Nicholas S, Tu R, Zhu BQ, Cha J, Swigart PM, Myagmar BE, Baker AJ, Simpson PC, Mann MJ (2010) Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J Cell Biochem 109:1185–1191. doi: 10.1002/jcb.22498 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tieqiang Zhao
    • 1
  • Wenyuan Zhao
    • 1
  • Weixin Meng
    • 1
  • Chang Liu
    • 1
  • Yuanjian Chen
    • 1
  • Syamal K. Bhattacharya
    • 1
  • Yao Sun
    • 1
  1. 1.Division of Cardiovascular Diseases, Department of MedicineUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations